def ttest_table(ttest_table_name, tcrit, tables1, tables2, xcolname, ycolname): assert (len(tables1) == len(tables2)) colnames = [xcolname, 'Mean', 'StdDev', 'Sig', 'tval', 'pval'] xcoltype = tables1[0].coltypes[tables1[0].colnames.index(xcolname)] coltypes = [xcoltype, 'float', 'float', 'int', 'float', 'float'] xvalues = common_functions.get_timesteps(tables1 + tables2, xcolname) result = datalib.Table(ttest_table_name, colnames, coltypes) for x in xvalues: data1 = [table[x][ycolname] for table in tables1] data2 = [table[x][ycolname] for table in tables2] diffMean, stdDev, tval, pval = ttest(data1, data2) row = result.createRow() row[xcolname] = x row["Mean"] = diffMean row["StdDev"] = stdDev if tval >= tcrit: row["Sig"] = 1 else: row["Sig"] = 0 row["tval"] = tval row["pval"] = pval return result
def avr_table_from_tables( avr_table_name, tables, xcolname, ycolname ): colnames = [xcolname, 'min', 'q1', 'median', 'q3', 'max', 'mean', 'mean_stderr', 'sampsize'] xcoltype = tables[0].coltypes[ tables[0].colnames.index(xcolname) ] coltypes = [xcoltype, 'float', 'float', 'float', 'float', 'float', 'float', 'float', 'int'] result = datalib.Table(avr_table_name, colnames, coltypes) xvalues = common_functions.get_timesteps( tables, xcolname ) for x in xvalues: ydata = [] for table in tables: ydata.append( table[x][ycolname] ) ydata.sort() minimum, maximum, mean, mean_stderr, q1, q3, median = avr(ydata) row = result.createRow() row.set(xcolname, x) row.set('min', minimum) row.set('max', maximum) row.set('mean', mean) row.set('mean_stderr', mean_stderr) row.set('median', median) row.set('q1', q1) row.set('q3', q3) row.set('sampsize', len(ydata)) return result
def avr_table_from_tables(avr_table_name, tables, xcolname, ycolname): colnames = [ xcolname, 'min', 'q1', 'median', 'q3', 'max', 'mean', 'mean_stderr', 'sampsize' ] xcoltype = tables[0].coltypes[tables[0].colnames.index(xcolname)] coltypes = [ xcoltype, 'float', 'float', 'float', 'float', 'float', 'float', 'float', 'int' ] result = datalib.Table(avr_table_name, colnames, coltypes) xvalues = common_functions.get_timesteps(tables, xcolname) for x in xvalues: ydata = [] for table in tables: ydata.append(table[x][ycolname]) ydata.sort() minimum, maximum, mean, mean_stderr, q1, q3, median = avr(ydata) row = result.createRow() row.set(xcolname, x) row.set('min', minimum) row.set('max', maximum) row.set('mean', mean) row.set('mean_stderr', mean_stderr) row.set('median', median) row.set('q1', q1) row.set('q3', q3) row.set('sampsize', len(ydata)) return result
def ttest_table( ttest_table_name, tcrit, tables1, tables2, xcolname, ycolname ): assert( len(tables1) == len(tables2) ) colnames = [xcolname, 'Mean', 'StdDev', 'Sig', 'tval', 'pval'] xcoltype = tables1[0].coltypes[ tables1[0].colnames.index(xcolname) ] coltypes = [xcoltype, 'float', 'float', 'int', 'float', 'float'] xvalues = common_functions.get_timesteps( tables1 + tables2, xcolname ) result = datalib.Table( ttest_table_name, colnames, coltypes ) for x in xvalues: data1 = [ table[x][ycolname] for table in tables1 ] data2 = [ table[x][ycolname] for table in tables2 ] diffMean, stdDev, tval, pval = ttest( data1, data2 ) row = result.createRow() row[xcolname] = x row["Mean"] = diffMean row["StdDev"] = stdDev if tval >= tcrit: row["Sig"] = 1 else: row["Sig"] = 0 row["tval"] = tval row["pval"] = pval return result