def determine_ref_background(obj, no_bkg=False): """ This function takes in a collection of pixels that have been selected as the reflectometer background. The pixels are summed into a single spectrum and then scaled by the total number of pixels present in the selection. @param obj: Object containing reflectometer background information @type obj: C{SOM.SOM} @param no_bkg: (OPTIONAL) Flag which determines if the background will be calculated @type no_bkg: C{boolean} @return: A length object containing a summed background spectrum scaled by the total number of background pixels @rtype: C{SOM.SOM} """ import dr_lib import common_lib import hlr_utils # If user does not desire background subtraction or incoming SOM is None, # return None if no_bkg or obj is None: return None # set up for working through data o_descr = hlr_utils.get_descr(obj) if o_descr != "SOM": raise RuntimeError("Must provide a SOM to the function.") # Go on else: pass # Combine all background spectra into one obj1 = dr_lib.sum_all_spectra(obj) # Determine scaling ratio ratio = (1.0 / float(len(obj)), 0.0) # Scale background spectrum by ratio return common_lib.mult_ncerr(obj1, ratio)
def run(config, tim=None): """ This method is where the data reduction process gets done. @param config: Object containing the data reduction configuration information. @type config: L{hlr_utils.Configure} @param tim: (OPTIONAL) Object that will allow the method to perform timing evaluations. @type tim: C{sns_time.DiffTime} """ import common_lib import dr_lib import DST if tim is not None: tim.getTime(False) old_time = tim.getOldTime() if config.data is None: raise RuntimeError("Need to pass a data filename to the driver "\ +"script.") # Read in geometry if one is provided if config.inst_geom is not None: if config.verbose: print "Reading in instrument geometry file" inst_geom_dst = DST.getInstance("application/x-NxsGeom", config.inst_geom) else: inst_geom_dst = None # Perform early background subtraction if the hwfix flag is used if config.hwfix: if not config.mc: so_axis = "time_of_flight" else: so_axis = "Time_of_Flight" bkg_som0 = dr_lib.add_files(config.back, Data_Paths=config.data_paths.toPath(), SO_Axis=so_axis, Signal_ROI=config.roi_file, dataset_type="background", Verbose=config.verbose, Timer=tim) bkg_som = dr_lib.fix_bin_contents(bkg_som0) del bkg_som0 else: bkg_som = None # Perform Steps 1-15 on sample data d_som1 = dr_lib.process_igs_data(config.data, config, timer=tim, inst_geom_dst=inst_geom_dst, tib_const=config.tib_data_const, bkg_som=bkg_som) # Perform Steps 1-15 on empty can data if config.ecan is not None: e_som1 = dr_lib.process_igs_data(config.ecan, config, timer=tim, inst_geom_dst=inst_geom_dst, dataset_type="empty_can", tib_const=config.tib_ecan_const, bkg_som=bkg_som) else: e_som1 = None # Perform Steps 1-15 on normalization data if config.norm is not None: n_som1 = dr_lib.process_igs_data(config.norm, config, timer=tim, inst_geom_dst=inst_geom_dst, dataset_type="normalization", tib_const=config.tib_norm_const, bkg_som=bkg_som) else: n_som1 = None # Perform Steps 1-15 on background data if config.back is not None: b_som1 = dr_lib.process_igs_data(config.back, config, timer=tim, inst_geom_dst=inst_geom_dst, dataset_type="background", tib_const=config.tib_back_const, bkg_som=bkg_som) else: b_som1 = None # Perform Step 1-15 on direct scattering background data if config.dsback is not None: ds_som1 = dr_lib.process_igs_data(config.dsback, config, timer=tim, inst_geom_dst=inst_geom_dst, tib_const=config.tib_dsback_const, dataset_type="dsbackground", bkg_som=bkg_som) # Note: time_zero_slope MUST be a tuple if config.time_zero_slope is not None: ds_som1.attr_list["Time_zero_slope"] = \ config.time_zero_slope.toValErrTuple() # Note: time_zero_offset MUST be a tuple if config.time_zero_offset is not None: ds_som1.attr_list["Time_zero_offset"] = \ config.time_zero_offset.toValErrTuple() # Step 16: Linearly interpolate TOF elastic range in direct scattering # background data # First convert TOF elastic range to appropriate pixel initial # wavelengths if config.verbose: print "Determining initial wavelength range for elastic line" if tim is not None: tim.getTime(False) if config.tof_elastic is None: # Units are in microseconds tof_elastic_range = (140300, 141300) else: tof_elastic_range = config.tof_elastic ctof_elastic_low = dr_lib.convert_single_to_list(\ "tof_to_initial_wavelength_igs_lin_time_zero", (tof_elastic_range[0], 0.0), ds_som1) ctof_elastic_high = dr_lib.convert_single_to_list(\ "tof_to_initial_wavelength_igs_lin_time_zero", (tof_elastic_range[1], 0.0), ds_som1) ctof_elastic_range = [(ctof_elastic_low[i][0], ctof_elastic_high[i][0]) for i in xrange(len(ctof_elastic_low))] if tim is not None: tim.getTime(msg="After calculating initial wavelength range for "\ +"elastic line ") del ctof_elastic_low, ctof_elastic_high if config.split: lambda_filter = [(d_som1[i].axis[0].val[0], d_som1[i].axis[0].val[-1]) for i in xrange(len(d_som1))] else: lambda_filter = None # Now interpolate spectra between TOF elastic range (converted to # initial wavelength) if config.verbose: print "Linearly interpolating direct scattering spectra" if tim is not None: tim.getTime(False) ds_som2 = dr_lib.lin_interpolate_spectra(ds_som1, ctof_elastic_range, filter_axis=lambda_filter) if tim is not None: tim.getTime(msg="After linearly interpolating direct scattering "\ +"spectra ") if config.dump_dslin: ds_som2_1 = dr_lib.sum_all_spectra(ds_som2,\ rebin_axis=config.lambda_bins.toNessiList()) hlr_utils.write_file(config.output, "text/Spec", ds_som2_1, output_ext="lin", data_ext=config.ext_replacement, path_replacement=config.path_replacement, verbose=config.verbose, message="dsbackground linear interpolation") del ds_som2_1 del ds_som1 else: ds_som2 = None if inst_geom_dst is not None: inst_geom_dst.release_resource() # Steps 17-18: Subtract background spectrum from sample spectrum if config.dsback is None: back_som = b_som1 bkg_type = "background" else: back_som = ds_som2 bkg_type = "dsbackground" d_som2 = dr_lib.subtract_bkg_from_data(d_som1, back_som, verbose=config.verbose, timer=tim, dataset1="data", dataset2=bkg_type, scale=config.scale_bs) if config.dsback is not None: del ds_som2 # Step 19: Zero region outside TOF elastic for background for empty can if config.dsback is None: bcs_som = b_som1 cs_som = e_som1 else: if config.verbose and b_som1 is not None: print "Zeroing background spectra" if tim is not None and b_som1 is not None: tim.getTime(False) bcs_som = dr_lib.zero_spectra(b_som1, ctof_elastic_range) if tim is not None and b_som1 is not None: tim.getTime(msg="After zeroing background spectra") if config.verbose and e_som1 is not None: print "Zeroing empty can spectra" if tim is not None and e_som1 is not None: tim.getTime(False) cs_som = dr_lib.zero_spectra(e_som1, ctof_elastic_range) if tim is not None and e_som1 is not None: tim.getTime(msg="After zeroing empty can spectra") del ctof_elastic_range # Steps 20-21: Subtract background spectrum from empty can spectrum e_som2 = dr_lib.subtract_bkg_from_data(cs_som, bcs_som, verbose=config.verbose, timer=tim, dataset1="data-empty_can", dataset2="background", scale=config.scale_bcs) # Steps 22-23: Subtract background spectrum from empty can spectrum for # normalization try: config.pre_norm except AttributeError: config.pre_norm = False if not config.pre_norm: e_som3 = dr_lib.subtract_bkg_from_data(e_som1, b_som1, verbose=config.verbose, timer=tim, dataset1="norm-empty_can", dataset2="background", scale=config.scale_bcn) else: e_som3 = None # Steps 24-25: Subtract background spectrum from normalization spectrum if not config.pre_norm: n_som2 = dr_lib.subtract_bkg_from_data(n_som1, b_som1, verbose=config.verbose, timer=tim, dataset1="normalization", dataset2="background", scale=config.scale_bn) else: n_som2 = n_som1 del b_som1, e_som1, bcs_som, cs_som # Steps 26-27: Subtract empty can spectrum from sample spectrum d_som3 = dr_lib.subtract_bkg_from_data(d_som2, e_som2, verbose=config.verbose, timer=tim, dataset1="data", dataset2="empty_can", scale=config.scale_cs) del d_som2, e_som2 # Steps 28-29: Subtract empty can spectrum from normalization spectrum if not config.pre_norm: n_som3 = dr_lib.subtract_bkg_from_data(n_som2, e_som3, verbose=config.verbose, timer=tim, dataset1="normalization", dataset2="empty_can", scale=config.scale_cn) else: n_som3 = n_som2 del n_som2, e_som3 # Step 30-31: Integrate normalization spectra if config.verbose and n_som3 is not None and not config.pre_norm: print "Integrating normalization spectra" if not config.pre_norm: norm_int = dr_lib.integrate_spectra(n_som3, start=config.norm_start, end=config.norm_end, norm=True) else: norm_int = n_som3 del n_som3 # Step 32: Normalize data by integrated values if config.verbose and norm_int is not None: print "Normalizing data by normalization data" if norm_int is not None: d_som4 = common_lib.div_ncerr(d_som3, norm_int) else: d_som4 = d_som3 if norm_int is not None: if tim is not None: tim.getTime(msg="After normalizing data ") del d_som3, norm_int if config.dump_norm: if tim is not None: tim.getTime(False) hlr_utils.write_file(config.output, "text/Spec", d_som4, output_ext="wvn", data_ext=config.ext_replacement, path_replacement=config.path_replacement, verbose=config.verbose, message="wavelength (vanadium norm) information") if tim is not None: tim.getTime(msg="After writing wavelength (vanadium norm) info ") # Steps 33 to end: Creating S(Q,E) if config.Q_bins is not None: if config.verbose: print "Creating 2D spectrum" if tim is not None: tim.getTime(False) d_som5 = dr_lib.create_E_vs_Q_igs(d_som4, config.E_bins.toNessiList(), config.Q_bins.toNessiList(), so_id="Full Detector", y_label="counts", y_units="counts / (ueV * A^-1)", x_labels=["Q transfer", "energy transfer"], x_units=["1/Angstroms","ueV"], split=config.split, Q_filter=False, configure=config) if tim is not None: tim.getTime(msg="After creation of final spectrum ") del d_som4 # Steps 33 to 36: Create S(-cos(polar), E) elif config.ncospol_bins is not None: if config.verbose: print "Convert wavelength to energy transfer" if tim is not None: tim.getTime(False) d_som4a = dr_lib.energy_transfer(d_som4, "IGS", "Wavelength_final", sa_norm=True, scale=True, change_units=True) if tim is not None: tim.getTime(msg="After wavelength to energy transfer conversion ") del d_som4 if config.verbose: print "Creating 2D spectrum" if tim is not None: tim.getTime(False) d_som5 = dr_lib.create_param_vs_Y(d_som4a, "polar", "negcos_param_array", config.ncospol_bins.toNessiList(), rebin_axis=config.E_bins.toNessiList(), y_label="counts", y_units="counts / ueV", x_labels=["-cos(polar)", "Energy Transfer"], x_units=["", "ueV"]) if tim is not None: tim.getTime(msg="After creation of final spectrum ") # If rescaling factor present, rescale the data if config.rescale_final is not None and not config.split: d_som6 = common_lib.mult_ncerr(d_som5, (config.rescale_final, 0.0)) else: d_som6 = d_som5 if tim is None: old_time = None if not __name__ == "amorphous_reduction_sqe": del d_som5 __write_output(d_som6, config, tim, old_time) else: if config.create_output: del d_som5 __write_output(d_som6, config, tim, old_time) else: return d_som6
def run(config, tim=None): """ This method is where the data reduction process gets done. @param config: Object containing the data reduction configuration information. @type config: L{hlr_utils.Configure} @param tim: (OPTIONAL) Object that will allow the method to perform timing evaluations. @type tim: C{sns_time.DiffTime} """ import dr_lib import DST if tim is not None: tim.getTime(False) old_time = tim.getOldTime() if config.data is None: raise RuntimeError("Need to pass a data filename to the driver "\ +"script.") # Read in geometry if one is provided if config.inst_geom is not None: if config.verbose: print "Reading in instrument geometry file" inst_geom_dst = DST.getInstance("application/x-NxsGeom", config.inst_geom) else: inst_geom_dst = None # Perform Steps 1-11 on sample data d_som1 = dr_lib.process_sas_data(config.data, config, timer=tim, inst_geom_dst=inst_geom_dst, bkg_subtract=config.bkg_coeff, acc_down_time=config.data_acc_down_time.toValErrTuple(), bkg_scale=config.bkg_scale, trans_data=config.data_trans) # Perform Steps 1-11 on buffer/solvent only data if config.solv is not None: s_som1 = dr_lib.process_sas_data(config.solv, config, timer=tim, inst_geom_dst=inst_geom_dst, dataset_type="solvent", bkg_subtract=config.bkg_coeff, acc_down_time=config.solv_acc_down_time.toValErrTuple(), bkg_scale=config.bkg_scale, trans_data=config.solv_trans) else: s_som1 = None # Step 12: Subtract buffer/solvent only spectrum from sample spectrum d_som2 = dr_lib.subtract_bkg_from_data(d_som1, s_som1, verbose=config.verbose, timer=tim, dataset1="data", dataset2="solvent") del s_som1, d_som1 # Perform Steps 1-11 on empty-can data if config.ecan is not None: e_som1 = dr_lib.process_sas_data(config.ecan, config, timer=tim, inst_geom_dst=inst_geom_dst, dataset_type="empty_can", bkg_subtract=config.bkg_coeff, acc_down_time=config.ecan_acc_down_time.toValErrTuple(), bkg_scale=config.bkg_scale, trans_data=config.ecan_trans) else: e_som1 = None # Step 13: Subtract empty-can spectrum from sample spectrum d_som3 = dr_lib.subtract_bkg_from_data(d_som2, e_som1, verbose=config.verbose, timer=tim, dataset1="data", dataset2="empty_can") del e_som1, d_som2 # Perform Steps 1-11 on open beam data if config.open is not None: o_som1 = dr_lib.process_sas_data(config.open, config, timer=tim, inst_geom_dst=inst_geom_dst, dataset_type="open_beam", bkg_subtract=config.bkg_coeff, acc_down_time=config.open_acc_down_time.toValErrTuple(), bkg_scale=config.bkg_scale) else: o_som1 = None # Step 14: Subtract open beam spectrum from sample spectrum d_som4 = dr_lib.subtract_bkg_from_data(d_som3, o_som1, verbose=config.verbose, timer=tim, dataset1="data", dataset2="open_beam") del o_som1, d_som3 # Perform Steps 1-11 on dark current data if config.dkcur is not None: dc_som1 = dr_lib.process_sas_data(config.open, config, timer=tim, inst_geom_dst=inst_geom_dst, dataset_type="dark_current", bkg_subtract=config.bkg_coeff) else: dc_som1 = None # Step 15: Subtract dark current spectrum from sample spectrum d_som5 = dr_lib.subtract_bkg_from_data(d_som4, dc_som1, verbose=config.verbose, timer=tim, dataset1="data", dataset2="dark_current") del dc_som1, d_som4 # Create 2D distributions is necessary if config.dump_Q_r: d_som5_1 = dr_lib.create_param_vs_Y(d_som5, "radius", "param_array", config.r_bins.toNessiList(), rebin_axis=config.Q_bins.toNessiList(), binnorm=True, y_label="S", y_units="Counts / A^-1 m", x_labels=["Radius", "Q"], x_units=["m", "1/Angstroms"]) hlr_utils.write_file(config.output, "text/Dave2d", d_som5_1, output_ext="qvr", verbose=config.verbose, data_ext=config.ext_replacement, path_replacement=config.path_replacement, message="S(r, Q) information") del d_som5_1 if config.dump_Q_theta: d_som5_1 = dr_lib.create_param_vs_Y(d_som5, "polar", "param_array", config.theta_bins.toNessiList(), rebin_axis=config.Q_bins.toNessiList(), binnorm=True, y_label="S", y_units="Counts / A^-1 rads", x_labels=["Polar Angle", "Q"], x_units=["rads", "1/Angstroms"]) hlr_utils.write_file(config.output, "text/Dave2d", d_som5_1, output_ext="qvt", verbose=config.verbose, data_ext=config.ext_replacement, path_replacement=config.path_replacement, message="S(theta, Q) information") del d_som5_1 # Steps 16 and 17: Rebin and sum all spectra if config.verbose: print "Rebinning and summing for final spectrum" if tim is not None: tim.getTime(False) if config.dump_frac_rebin: set_conf = config else: set_conf = None d_som6 = dr_lib.sum_by_rebin_frac(d_som5, config.Q_bins.toNessiList(), configure=set_conf) if tim is not None: tim.getTime(msg="After rebinning and summing for spectrum") del d_som5 if config.facility == "LENS": # Step 18: Scale final spectrum by Q bin centers if config.verbose: print "Scaling final spectrum by Q centers" if tim is not None: tim.getTime(False) d_som7 = dr_lib.fix_bin_contents(d_som6, scale=True, width=True, units="1/Angstroms") if tim is not None: tim.getTime(msg="After scaling final spectrum") else: d_som7 = d_som6 del d_som6 # If rescaling factor present, rescale the data if config.rescale_final is not None: import common_lib d_som8 = common_lib.mult_ncerr(d_som7, (config.rescale_final, 0.0)) else: d_som8 = d_som7 del d_som7 hlr_utils.write_file(config.output, "text/Spec", d_som8, verbose=config.verbose, replace_path=False, replace_ext=False, message="combined S(Q) information") # Create 1D canSAS file hlr_utils.write_file(config.output, "text/canSAS", d_som8, verbose=config.verbose, output_ext="xml", data_ext=config.ext_replacement, path_replacement=config.path_replacement, message="combined S(Q) information") d_som8.attr_list["config"] = config hlr_utils.write_file(config.output, "text/rmd", d_som8, output_ext="rmd", data_ext=config.ext_replacement, path_replacement=config.path_replacement, verbose=config.verbose, message="metadata") if tim is not None: tim.setOldTime(old_time) tim.getTime(msg="Total Running Time")
def run(config, tim): """ This method is where the data reduction process gets done. @param config: Object containing the data reduction configuration information. @type config: L{hlr_utils.Configure} @param tim: Object that will allow the method to perform timing evaluations. @type tim: C{sns_time.DiffTime} """ import common_lib import dr_lib if tim is not None: tim.getTime(False) old_time = tim.getOldTime() if config.data1 is None or config.data2 is None: raise RuntimeError("Need to pass a data filename(s) to the driver "\ +"script.") dst_type1 = hlr_utils.file_peeker(config.data1[0]) if config.verbose: print "Initial file type (data set 1):", dst_type1 d_som1 = dr_lib.add_files(config.data1, dst_type=dst_type1, Verbose=config.verbose, Timer=tim) dst_type2 = hlr_utils.file_peeker(config.data2[0]) if config.verbose: print "Initial file type (data set 2):", dst_type2 d_som2 = dr_lib.add_files(config.data2, dst_type=dst_type2, Verbose=config.verbose, Timer=tim) # Get requested simple math operation func = common_lib.__getattribute__(config.operation) d_som3 = func(d_som1, d_som2) del d_som1, d_som2 # Rescale data if necessary if config.rescale is not None: d_som4 = common_lib.mult_ncerr(d_som3, (config.rescale, 0.0)) else: d_som4 = d_som3 del d_som3 # Write out file after simple math operation hlr_utils.write_file(config.output, dst_type1, d_som4, verbose=config.verbose, replace_ext=False, path_replacement=config.path_replacement, axis_ok=True, message="operated file") if tim is not None: tim.setOldTime(old_time) tim.getTime(msg="Total Running Time")
def subtract_bkg_from_data(data_som, bkg_som, **kwargs): """ This function subtracts one data set from another. @param data_som: Object containing the data to subtract from @type data_som: C{SOM.SOM} or C{SOM.SO} @param bkg_som: Object containing the data to be subtracted @type bkg_som: C{SOM.SOM} or C{SOM.SO} @param kwargs: A list of keyword arguments that the function accepts: @keyword dataset1: The type name of the first dataset. Default is I{dataset1}. @type dataset1: C{string} @keyword dataset2: The type name of the second dataset. Default is I{dataset2}. @keyword scale: The constant by which to scale the background spectra @type scale: L{hlr_utils.DrParameter} @keyword verbose: A flag for turning on information from the function. @type verbose: C{boolean} @keyword timer: Timing object so the function can perform timing @type timer: C{sns_timer.DiffTime} @return: The data subtracted by the background @rtype: C{SOM.SOM} or C{SOM.SO} @raise TypeError: Both objects are not C{SOM}s, a C{SO} and a C{SOM} or a C{SOM} and a C{SO} """ # Kickout if data object is NoneType if data_som is None: return None # Kickout if background object is NoneType if bkg_som is None: return data_som # import the helper functions import hlr_utils (data_descr, bkg_descr) = hlr_utils.get_descr(data_som, bkg_som) if data_descr == "SOM" and bkg_descr == "SOM": hlr_utils.math_compatible(data_som, data_descr, bkg_som, bkg_descr) elif data_descr == "SOM" and bkg_descr == "SO" or \ data_descr == "SO" and bkg_descr == "SOM": # You have SO-SOM or SOM-SO, so assume everything is OK pass else: raise TypeError("The object combinations must be SOM-SOM, SO-SOM "\ +"or SOM-SO. You provided a %s and a %s" % \ (data_descr, bkg_descr)) # Check for keywords try: verbose = kwargs["verbose"] except KeyError: verbose = False try: t = kwargs["timer"] except KeyError: t = None try: dataset1 = kwargs["dataset1"] except KeyError: dataset1 = "dataset1" try: dataset2 = kwargs["dataset2"] except KeyError: dataset2 = "dataset2" try: scale = kwargs["scale"] except KeyError: scale = None import common_lib if scale is not None: if verbose: print "Scaling %s for %s" % (dataset2, dataset1) bkg_som2 = common_lib.mult_ncerr(bkg_som, scale.toValErrTuple()) if t is not None: t.getTime(msg="After scaling %s for %s " % (dataset2, dataset1)) else: bkg_som2 = bkg_som del bkg_som if verbose: print "Subtracting %s from %s" % (dataset2, dataset1) data_som2 = common_lib.sub_ncerr(data_som, bkg_som2) if t is not None: t.getTime(msg="After subtracting %s from %s " % (dataset2, dataset1)) return data_som2
def process_dgs_data(obj, conf, bcan, ecan, tcoeff, **kwargs): """ This function combines Steps 7 through 16 in Section 2.1.1 of the data reduction process for Direct Geometry Spectrometers as specified by the document at U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The function takes a calibrated dataset, a L{hlr_utils.Configure} object and processes the data accordingly. @param obj: A calibrated dataset object. @type obj: C{SOM.SOM} @param conf: Object that contains the current setup of the driver. @type conf: L{hlr_utils.Configure} @param bcan: The object containing the black can data. @type bcan: C{SOM.SOM} @param ecan: The object containing the empty can data. @type ecan: C{SOM.SOM} @param tcoeff: The transmission coefficient appropriate to the given data set. @type tcoeff: C{tuple} @param kwargs: A list of keyword arguments that the function accepts: @keyword dataset_type: The practical name of the dataset being processed. The default value is I{data}. @type dataset_type: C{string} @keyword cwp_used: A flag signalling the use of the chopper phase corrections. @type cwp_used: C{bool} @keyword timer: Timing object so the function can perform timing estimates. @type timer: C{sns_timer.DiffTime} @return: Object that has undergone all requested processing steps @rtype: C{SOM.SOM} """ import array_manip import common_lib import dr_lib import hlr_utils # Check keywords try: dataset_type = kwargs["dataset_type"] except KeyError: dataset_type = "data" try: t = kwargs["timer"] except KeyError: t = None cwp_used = kwargs.get("cwp_used", False) if conf.verbose: print "Processing %s information" % dataset_type # Step 7: Create black can background contribution if bcan is not None: if conf.verbose: print "Creating black can background contribution for %s" \ % dataset_type if t is not None: t.getTime(False) bccoeff = array_manip.sub_ncerr(1.0, 0.0, tcoeff[0], tcoeff[1]) bcan1 = common_lib.mult_ncerr(bcan, bccoeff) if t is not None: t.getTime(msg="After creating black can background contribution ") del bcan else: bcan1 = None # Step 8: Create empty can background contribution if ecan is not None: if conf.verbose: print "Creating empty can background contribution for %s" \ % dataset_type if t is not None: t.getTime(False) ecan1 = common_lib.mult_ncerr(ecan, tcoeff) if t is not None: t.getTime(msg="After creating empty can background contribution ") del ecan else: ecan1 = None # Step 9: Create background spectra if bcan1 is not None or ecan1 is not None and conf.verbose: print "Creating background spectra for %s" % dataset_type if bcan1 is not None and ecan1 is not None: if cwp_used: if conf.verbose: print "Rebinning empty can to black can axis." ecan2 = common_lib.rebin_axis_1D_frac(ecan1, bcan1[0].axis[0].val) else: ecan2 = ecan1 del ecan1 if t is not None: t.getTime(False) b_som = common_lib.add_ncerr(bcan1, ecan2) if t is not None: t.getTime(msg="After creating background spectra ") elif bcan1 is not None and ecan1 is None: b_som = bcan1 elif bcan1 is None and ecan1 is not None: b_som = ecan1 else: b_som = None del bcan1, ecan1 if cwp_used: if conf.verbose: print "Rebinning background spectra to %s" % dataset_type b_som1 = common_lib.rebin_axis_1D_frac(b_som, obj[0].axis[0].val) else: b_som1 = b_som del b_som if conf.dump_ctof_comb and b_som1 is not None: b_som_1 = dr_lib.sum_all_spectra(b_som1) hlr_utils.write_file(conf.output, "text/Spec", b_som_1, output_ext="ctof", extra_tag="background", data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, verbose=conf.verbose, message="combined background TOF information") del b_som_1 # Step 10: Subtract background from data obj1 = dr_lib.subtract_bkg_from_data(obj, b_som1, verbose=conf.verbose, timer=t, dataset1=dataset_type, dataset2="background") del obj, b_som1 # Step 11: Calculate initial velocity if conf.verbose: print "Calculating initial velocity" if t is not None: t.getTime(False) if conf.initial_energy is not None: initial_wavelength = common_lib.energy_to_wavelength(\ conf.initial_energy.toValErrTuple()) initial_velocity = common_lib.wavelength_to_velocity(\ initial_wavelength) else: # This should actually calculate it, but don't have a way right now pass if t is not None: t.getTime(msg="After calculating initial velocity ") # Step 12: Calculate the time-zero offset if conf.time_zero_offset is not None: time_zero_offset = conf.time_zero_offset.toValErrTuple() else: # This should actually calculate it, but don't have a way right now time_zero_offset = (0.0, 0.0) # Step 13: Convert time-of-flight to final velocity if conf.verbose: print "Converting TOF to final velocity DGS" if t is not None: t.getTime(False) obj2 = common_lib.tof_to_final_velocity_dgs(obj1, initial_velocity, time_zero_offset, units="microsecond") if t is not None: t.getTime(msg="After calculating TOF to final velocity DGS ") del obj1 # Step 14: Convert final velocity to final wavelength if conf.verbose: print "Converting final velocity DGS to final wavelength" if t is not None: t.getTime(False) obj3 = common_lib.velocity_to_wavelength(obj2) if t is not None: t.getTime(msg="After calculating velocity to wavelength ") del obj2 if conf.dump_wave_comb: obj3_1 = dr_lib.sum_all_spectra( obj3, rebin_axis=conf.lambda_bins.toNessiList()) hlr_utils.write_file(conf.output, "text/Spec", obj3_1, output_ext="fwv", extra_tag=dataset_type, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, verbose=conf.verbose, message="combined final wavelength information") del obj3_1 # Step 15: Create the detector efficiency if conf.det_eff is not None: if conf.verbose: print "Creating detector efficiency spectra" if t is not None: t.getTime(False) det_eff = dr_lib.create_det_eff(obj3) if t is not None: t.getTime(msg="After creating detector efficiency spectra ") else: det_eff = None # Step 16: Divide the detector pixel spectra by the detector efficiency if det_eff is not None: if conf.verbose: print "Correcting %s for detector efficiency" % dataset_type if t is not None: t.getTime(False) obj4 = common_lib.div_ncerr(obj3, det_eff) if t is not None: t.getTime(msg="After correcting %s for detector efficiency" \ % dataset_type) else: obj4 = obj3 del obj3, det_eff return obj4
def process_igs_data(datalist, conf, **kwargs): """ This function combines Steps 1 through 8 of the data reduction process for Inverse Geometry Spectrometers as specified by the documents at U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The function takes a list of file names, a L{hlr_utils.Configure} object and processes the data accordingly. This function should really only be used in the context of I{amorphous_reduction} and I{calc_norm_eff}. @param datalist: A list containing the filenames of the data to be processed. @type datalist: C{list} of C{string}s @param conf: Object that contains the current setup of the driver. @type conf: L{hlr_utils.Configure} @param kwargs: A list of keyword arguments that the function accepts: @keyword inst_geom_dst: File object that contains instrument geometry information. @type inst_geom_dst: C{DST.GeomDST} @keyword dataset_type: The practical name of the dataset being processed. The default value is I{data}. @type dataset_type: C{string} @keyword tib_const: Object providing the time-independent background constant to subtract. @type tib_const: L{hlr_utils.DrParameter} @keyword bkg_som: Object that will be used for early background subtraction @type bkg_som: C{SOM.SOM} @keyword timer: Timing object so the function can perform timing estimates. @type timer: C{sns_timer.DiffTime} @return: Object that has undergone all requested processing steps @rtype: C{SOM.SOM} """ import hlr_utils # Check keywords try: dataset_type = kwargs["dataset_type"] except KeyError: dataset_type = "data" try: t = kwargs["timer"] except KeyError: t = None try: if kwargs["tib_const"] is not None: tib_const = kwargs["tib_const"].toValErrTuple() else: tib_const = None except KeyError: tib_const = None try: i_geom_dst = kwargs["inst_geom_dst"] except KeyError: i_geom_dst = None try: bkg_som = kwargs["bkg_som"] except KeyError: bkg_som = None # Step 1: Open appropriate data files if not conf.mc: so_axis = "time_of_flight" else: so_axis = "Time_of_Flight" # Add so_axis to Configure object conf.so_axis = so_axis if conf.verbose: print "Reading %s file" % dataset_type # Special case handling for normalization data. Dynamically trying to # determine if incoming file is a previously calculated one. if dataset_type == "normalization": try: # Check the first incoming file dst_type = hlr_utils.file_peeker(datalist[0]) # If file_peeker succeeds, the DST is different than the function # returns dst_type = "text/num-info" # Let ROI file handle filtering data_paths = None except RuntimeError: # It's a NeXus file dst_type = "application/x-NeXus" data_paths = conf.data_paths.toPath() else: dst_type = "application/x-NeXus" data_paths = conf.data_paths.toPath() # The [0] is to get the data SOM and ignore the None background SOM dp_som0 = dr_lib.add_files(datalist, Data_Paths=data_paths, SO_Axis=so_axis, Signal_ROI=conf.roi_file, dataset_type=dataset_type, dst_type=dst_type, Verbose=conf.verbose, Timer=t) if t is not None: t.getTime(msg="After reading %s " % dataset_type) if dst_type == "text/num-info": # Since we have a pre-calculated normalization dataset, set the flag # and return the SOM now conf.pre_norm = True # Make the labels and units compatible with a NeXus file based SOM dp_som0.setAxisLabel(0, "wavelength") dp_som0.setAxisUnits(0, "Angstroms") dp_som0.setYUnits("Counts/A") return dp_som0 else: if dataset_type == "normalization": # Since we have a NeXus file, we need to continue conf.pre_norm = False # Cut the spectra if necessary dp_somA = dr_lib.cut_spectra(dp_som0, conf.tof_cut_min, conf.tof_cut_max) del dp_som0 dp_som1 = dr_lib.fix_bin_contents(dp_somA) del dp_somA if conf.inst_geom is not None: i_geom_dst.setGeometry(conf.data_paths.toPath(), dp_som1) if conf.no_mon_norm: dm_som1 = None else: if conf.verbose: print "Reading in monitor data from %s file" % dataset_type # The [0] is to get the data SOM and ignore the None background SOM dm_som0 = dr_lib.add_files(datalist, Data_Paths=conf.mon_path.toPath(), SO_Axis=so_axis, dataset_type=dataset_type, Verbose=conf.verbose, Timer=t) if t is not None: t.getTime(msg="After reading monitor data ") dm_som1 = dr_lib.fix_bin_contents(dm_som0) del dm_som0 if conf.inst_geom is not None: i_geom_dst.setGeometry(conf.mon_path.toPath(), dm_som1) if bkg_som is not None: bkg_pcharge = bkg_som.attr_list["background-proton_charge"].getValue() data_pcharge = dp_som1.attr_list[dataset_type + "-proton_charge"].getValue() ratio = data_pcharge / bkg_pcharge bkg_som1 = common_lib.mult_ncerr(bkg_som, (ratio, 0.0)) del bkg_som dp_som2 = dr_lib.subtract_bkg_from_data(dp_som1, bkg_som1, verbose=conf.verbose, timer=t, dataset1=dataset_type, dataset2="background") else: dp_som2 = dp_som1 del dp_som1 # Step 2: Dead Time Correction # No dead time correction is being applied to the data yet # Step 3: Time-independent background determination if conf.verbose and conf.tib_tofs is not None: print "Determining time-independent background from data" if t is not None and conf.tib_tofs is not None: t.getTime(False) B = dr_lib.determine_time_indep_bkg(dp_som2, conf.tib_tofs) if t is not None and B is not None: t.getTime(msg="After determining time-independent background ") if conf.dump_tib and B is not None: file_comment = "TOFs: %s" % conf.tib_tofs hlr_utils.write_file(conf.output, "text/num-info", B, output_ext="tib", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="time-independent background "\ +"information", tag="Average", units="counts", comments=[file_comment]) # Step 4: Subtract time-independent background if conf.verbose and B is not None: print "Subtracting time-independent background from data" if t is not None: t.getTime(False) if B is not None: dp_som3 = common_lib.sub_ncerr(dp_som2, B) else: dp_som3 = dp_som2 if B is not None and t is not None: t.getTime(msg="After subtracting time-independent background ") del dp_som2, B # Step 5: Subtract time-independent background constant if conf.verbose and tib_const is not None: print "Subtracting time-independent background constant from data" if t is not None and tib_const is not None: t.getTime(False) if tib_const is not None: dp_som4 = common_lib.sub_ncerr(dp_som3, tib_const) else: dp_som4 = dp_som3 if t is not None and tib_const is not None: t.getTime(msg="After subtracting time-independent background "\ +"constant ") del dp_som3 # Provide override capability for final wavelength, time-zero slope and # time-zero offset if conf.wavelength_final is not None: dp_som4.attr_list["Wavelength_final"] = \ conf.wavelength_final.toValErrTuple() # Note: time_zero_slope MUST be a tuple if conf.time_zero_slope is not None: dp_som4.attr_list["Time_zero_slope"] = \ conf.time_zero_slope.toValErrTuple() if dm_som1 is not None: dm_som1.attr_list["Time_zero_slope"] = \ conf.time_zero_slope.toValErrTuple() # Note: time_zero_offset MUST be a tuple if conf.time_zero_offset is not None: dp_som4.attr_list["Time_zero_offset"] = \ conf.time_zero_offset.toValErrTuple() if dm_som1 is not None: dm_som1.attr_list["Time_zero_offset"] = \ conf.time_zero_offset.toValErrTuple() # Step 6: Convert TOF to wavelength for data and monitor if conf.verbose: print "Converting TOF to wavelength" if t is not None: t.getTime(False) # Convert monitor if dm_som1 is not None: dm_som2 = common_lib.tof_to_wavelength_lin_time_zero( dm_som1, units="microsecond") else: dm_som2 = None # Convert detector pixels dp_som5 = common_lib.tof_to_initial_wavelength_igs_lin_time_zero( dp_som4, units="microsecond", run_filter=conf.filter) if t is not None: t.getTime(msg="After converting TOF to wavelength ") if conf.dump_wave: hlr_utils.write_file(conf.output, "text/Spec", dp_som5, output_ext="pxl", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="pixel wavelength information") if conf.dump_mon_wave and dm_som2 is not None: hlr_utils.write_file(conf.output, "text/Spec", dm_som2, output_ext="mxl", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="monitor wavelength information") del dp_som4, dm_som1 # Step 7: Efficiency correct monitor if conf.verbose and dm_som2 is not None and not conf.no_mon_effc: print "Efficiency correct monitor data" if t is not None: t.getTime(False) if not conf.no_mon_effc: dm_som3 = dr_lib.feff_correct_mon(dm_som2) else: dm_som3 = dm_som2 if t is not None and dm_som2 is not None and not conf.no_mon_effc: t.getTime(msg="After efficiency correcting monitor ") if conf.dump_mon_effc and not conf.no_mon_effc and dm_som3 is not None: hlr_utils.write_file(conf.output, "text/Spec", dm_som3, output_ext="mel", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="monitor wavelength information "\ +"(efficiency)") del dm_som2 # Step 8: Rebin monitor axis onto detector pixel axis if conf.verbose and dm_som3 is not None: print "Rebin monitor axis to detector pixel axis" if t is not None: t.getTime(False) dm_som4 = dr_lib.rebin_monitor(dm_som3, dp_som5) if t is not None and dm_som4 is not None: t.getTime(msg="After rebinning monitor ") del dm_som3 if conf.dump_mon_rebin and dm_som4 is not None: hlr_utils.write_file(conf.output, "text/Spec", dm_som4, output_ext="mrl", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="monitor wavelength information "\ +"(rebinned)") # The lambda-dependent background is only done on sample data (aka data) # for the BSS instrument at the SNS if conf.inst == "BSS" and conf.ldb_const is not None and \ dataset_type == "data": # Step 9: Convert chopper center wavelength to TOF center if conf.verbose: print "Converting chopper center wavelength to TOF" if t is not None: t.getTime(False) tof_center = dr_lib.convert_single_to_list(\ "initial_wavelength_igs_lin_time_zero_to_tof", conf.chopper_lambda_cent.toValErrTuple(), dp_som5) # Step 10: Calculate beginning and end of detector TOF spectrum if conf.verbose: print "Calculating beginning and ending TOF ranges" half_inv_chop_freq = 0.5 / conf.chopper_freq.toValErrTuple()[0] # Above is in seconds, need microseconds half_inv_chop_freq *= 1.0e6 tof_begin = common_lib.sub_ncerr(tof_center, (half_inv_chop_freq, 0.0)) tof_end = common_lib.add_ncerr(tof_center, (half_inv_chop_freq, 0.0)) # Step 11: Convert TOF_begin and TOF_end to wavelength if conf.verbose: print "Converting TOF_begin and TOF_end to wavelength" # Check for time-zero slope information try: tz_slope = conf.time_zero_slope.toValErrTuple() except AttributeError: tz_slope = (0.0, 0.0) # Check for time-zero offset information try: tz_offset = conf.time_zero_offset.toValErrTuple() except AttributeError: tz_offset = (0.0, 0.0) l_begin = common_lib.tof_to_initial_wavelength_igs_lin_time_zero(\ tof_begin, time_zero_slope=tz_slope, time_zero_offset=tz_offset, iobj=dp_som5, run_filter=False) l_end = common_lib.tof_to_initial_wavelength_igs_lin_time_zero(\ tof_end, time_zero_slope=tz_slope, time_zero_offset=tz_offset, iobj=dp_som5, run_filter=False) # Step 12: tof-least-bkg to lambda-least-bkg if conf.verbose: print "Converting TOF least background to wavelength" lambda_least_bkg = dr_lib.convert_single_to_list(\ "tof_to_initial_wavelength_igs_lin_time_zero", conf.tof_least_bkg.toValErrTuple(), dp_som5) if t is not None: t.getTime(msg="After converting boundary positions ") # Step 13: Create lambda-dependent background spectrum if conf.verbose: print "Creating lambda-dependent background spectra" if t is not None: t.getTime(False) ldb_som = dr_lib.shift_spectrum(dm_som4, lambda_least_bkg, l_begin, l_end, conf.ldb_const.getValue()) if t is not None: t.getTime(msg="After creating lambda-dependent background "\ +"spectra ") # Step 14: Subtract lambda-dependent background from sample data if conf.verbose: print "Subtracting lambda-dependent background from data" if t is not None: t.getTime(False) dp_som6 = common_lib.sub_ncerr(dp_som5, ldb_som) if t is not None: t.getTime(msg="After subtracting lambda-dependent background "\ +"from data ") else: dp_som6 = dp_som5 del dp_som5 # Step 15: Normalize data by monitor if conf.verbose and dm_som4 is not None: print "Normalizing data by monitor" if t is not None: t.getTime(False) if dm_som4 is not None: dp_som7 = common_lib.div_ncerr(dp_som6, dm_som4) if t is not None: t.getTime(msg="After normalizing data by monitor ") else: dp_som7 = dp_som6 if conf.dump_wave_mnorm: dp_som7_1 = dr_lib.sum_all_spectra(dp_som7,\ rebin_axis=conf.lambda_bins.toNessiList()) write_message = "combined pixel wavelength information" if dm_som4 is not None: write_message += " (monitor normalized)" hlr_utils.write_file(conf.output, "text/Spec", dp_som7_1, output_ext="pml", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message=write_message) del dp_som7_1 del dm_som4, dp_som6 return dp_som7
def run(config, tim=None): """ This method is where the data reduction process gets done. @param config: Object containing the data reduction configuration information. @type config: L{hlr_utils.Configure} @param tim: (OPTIONAL) Object that will allow the method to perform timing evaluations. @type tim: C{sns_time.DiffTime} """ import common_lib import dr_lib import DST if tim is not None: tim.getTime(False) old_time = tim.getOldTime() if config.data is None: raise RuntimeError("Need to pass a data filename to the driver "\ +"script.") # Read in geometry if one is provided if config.inst_geom is not None: if config.verbose: print "Reading in instrument geometry file" inst_geom_dst = DST.getInstance("application/x-NxsGeom", config.inst_geom) else: inst_geom_dst = None # Perform early background subtraction if the hwfix flag is used if config.hwfix: if not config.mc: so_axis = "time_of_flight" else: so_axis = "Time_of_Flight" bkg_som0 = dr_lib.add_files(config.back, Data_Paths=config.data_paths.toPath(), SO_Axis=so_axis, Signal_ROI=config.roi_file, dataset_type="background", Verbose=config.verbose, Timer=tim) bkg_som = dr_lib.fix_bin_contents(bkg_som0) del bkg_som0 else: bkg_som = None # Perform Steps 1-15 on sample data d_som1 = dr_lib.process_igs_data(config.data, config, timer=tim, inst_geom_dst=inst_geom_dst, tib_const=config.tib_data_const, bkg_som=bkg_som) # Perform Steps 1-15 on empty can data if config.ecan is not None: e_som1 = dr_lib.process_igs_data(config.ecan, config, timer=tim, inst_geom_dst=inst_geom_dst, dataset_type="empty_can", tib_const=config.tib_ecan_const, bkg_som=bkg_som) else: e_som1 = None # Perform Steps 1-15 on normalization data if config.norm is not None: n_som1 = dr_lib.process_igs_data(config.norm, config, timer=tim, inst_geom_dst=inst_geom_dst, dataset_type="normalization", tib_const=config.tib_norm_const, bkg_som=bkg_som) else: n_som1 = None # Perform Steps 1-15 on background data if config.back is not None: b_som1 = dr_lib.process_igs_data(config.back, config, timer=tim, inst_geom_dst=inst_geom_dst, dataset_type="background", tib_const=config.tib_back_const, bkg_som=bkg_som) else: b_som1 = None # Perform Step 1-15 on direct scattering background data if config.dsback is not None: ds_som1 = dr_lib.process_igs_data(config.dsback, config, timer=tim, inst_geom_dst=inst_geom_dst, tib_const=config.tib_dsback_const, dataset_type="dsbackground", bkg_som=bkg_som) # Note: time_zero_slope MUST be a tuple if config.time_zero_slope is not None: ds_som1.attr_list["Time_zero_slope"] = \ config.time_zero_slope.toValErrTuple() # Note: time_zero_offset MUST be a tuple if config.time_zero_offset is not None: ds_som1.attr_list["Time_zero_offset"] = \ config.time_zero_offset.toValErrTuple() # Step 16: Linearly interpolate TOF elastic range in direct scattering # background data # First convert TOF elastic range to appropriate pixel initial # wavelengths if config.verbose: print "Determining initial wavelength range for elastic line" if tim is not None: tim.getTime(False) if config.tof_elastic is None: # Units are in microseconds tof_elastic_range = (140300, 141300) else: tof_elastic_range = config.tof_elastic ctof_elastic_low = dr_lib.convert_single_to_list(\ "tof_to_initial_wavelength_igs_lin_time_zero", (tof_elastic_range[0], 0.0), ds_som1) ctof_elastic_high = dr_lib.convert_single_to_list(\ "tof_to_initial_wavelength_igs_lin_time_zero", (tof_elastic_range[1], 0.0), ds_som1) ctof_elastic_range = [(ctof_elastic_low[i][0], ctof_elastic_high[i][0]) for i in xrange(len(ctof_elastic_low))] if tim is not None: tim.getTime(msg="After calculating initial wavelength range for "\ +"elastic line ") del ctof_elastic_low, ctof_elastic_high if config.split: lambda_filter = [(d_som1[i].axis[0].val[0], d_som1[i].axis[0].val[-1]) for i in xrange(len(d_som1))] else: lambda_filter = None # Now interpolate spectra between TOF elastic range (converted to # initial wavelength) if config.verbose: print "Linearly interpolating direct scattering spectra" if tim is not None: tim.getTime(False) ds_som2 = dr_lib.lin_interpolate_spectra(ds_som1, ctof_elastic_range, filter_axis=lambda_filter) if tim is not None: tim.getTime(msg="After linearly interpolating direct scattering "\ +"spectra ") if config.dump_dslin: ds_som2_1 = dr_lib.sum_all_spectra(ds_som2,\ rebin_axis=config.lambda_bins.toNessiList()) hlr_utils.write_file(config.output, "text/Spec", ds_som2_1, output_ext="lin", data_ext=config.ext_replacement, path_replacement=config.path_replacement, verbose=config.verbose, message="dsbackground linear interpolation") del ds_som2_1 del ds_som1 else: ds_som2 = None if inst_geom_dst is not None: inst_geom_dst.release_resource() # Steps 17-18: Subtract background spectrum from sample spectrum if config.dsback is None: back_som = b_som1 bkg_type = "background" else: back_som = ds_som2 bkg_type = "dsbackground" d_som2 = dr_lib.subtract_bkg_from_data(d_som1, back_som, verbose=config.verbose, timer=tim, dataset1="data", dataset2=bkg_type, scale=config.scale_bs) if config.dsback is not None: del ds_som2 # Step 19: Zero region outside TOF elastic for background for empty can if config.dsback is None: bcs_som = b_som1 cs_som = e_som1 else: if config.verbose and b_som1 is not None: print "Zeroing background spectra" if tim is not None and b_som1 is not None: tim.getTime(False) bcs_som = dr_lib.zero_spectra(b_som1, ctof_elastic_range) if tim is not None and b_som1 is not None: tim.getTime(msg="After zeroing background spectra") if config.verbose and e_som1 is not None: print "Zeroing empty can spectra" if tim is not None and e_som1 is not None: tim.getTime(False) cs_som = dr_lib.zero_spectra(e_som1, ctof_elastic_range) if tim is not None and e_som1 is not None: tim.getTime(msg="After zeroing empty can spectra") del ctof_elastic_range # Steps 20-21: Subtract background spectrum from empty can spectrum e_som2 = dr_lib.subtract_bkg_from_data(cs_som, bcs_som, verbose=config.verbose, timer=tim, dataset1="data-empty_can", dataset2="background", scale=config.scale_bcs) # Steps 22-23: Subtract background spectrum from empty can spectrum for # normalization try: config.pre_norm except AttributeError: config.pre_norm = False if not config.pre_norm: e_som3 = dr_lib.subtract_bkg_from_data(e_som1, b_som1, verbose=config.verbose, timer=tim, dataset1="norm-empty_can", dataset2="background", scale=config.scale_bcn) else: e_som3 = None # Steps 24-25: Subtract background spectrum from normalization spectrum if not config.pre_norm: n_som2 = dr_lib.subtract_bkg_from_data(n_som1, b_som1, verbose=config.verbose, timer=tim, dataset1="normalization", dataset2="background", scale=config.scale_bn) else: n_som2 = n_som1 del b_som1, e_som1, bcs_som, cs_som # Steps 26-27: Subtract empty can spectrum from sample spectrum d_som3 = dr_lib.subtract_bkg_from_data(d_som2, e_som2, verbose=config.verbose, timer=tim, dataset1="data", dataset2="empty_can", scale=config.scale_cs) del d_som2, e_som2 # Steps 28-29: Subtract empty can spectrum from normalization spectrum if not config.pre_norm: n_som3 = dr_lib.subtract_bkg_from_data(n_som2, e_som3, verbose=config.verbose, timer=tim, dataset1="normalization", dataset2="empty_can", scale=config.scale_cn) else: n_som3 = n_som2 del n_som2, e_som3 # Step 30-31: Integrate normalization spectra if config.verbose and n_som3 is not None and not config.pre_norm: print "Integrating normalization spectra" if not config.pre_norm: norm_int = dr_lib.integrate_spectra(n_som3, start=config.norm_start, end=config.norm_end, norm=True) else: norm_int = n_som3 del n_som3 # Step 32: Normalize data by integrated values if config.verbose and norm_int is not None: print "Normalizing data by normalization data" if norm_int is not None: d_som4 = common_lib.div_ncerr(d_som3, norm_int) else: d_som4 = d_som3 if norm_int is not None: if tim is not None: tim.getTime(msg="After normalizing data ") del d_som3, norm_int if config.dump_norm: if tim is not None: tim.getTime(False) hlr_utils.write_file(config.output, "text/Spec", d_som4, output_ext="wvn", data_ext=config.ext_replacement, path_replacement=config.path_replacement, verbose=config.verbose, message="wavelength (vanadium norm) information") if tim is not None: tim.getTime(msg="After writing wavelength (vanadium norm) info ") # Steps 33 to end: Creating S(Q,E) if config.Q_bins is not None: if config.verbose: print "Creating 2D spectrum" if tim is not None: tim.getTime(False) d_som5 = dr_lib.create_E_vs_Q_igs( d_som4, config.E_bins.toNessiList(), config.Q_bins.toNessiList(), so_id="Full Detector", y_label="counts", y_units="counts / (ueV * A^-1)", x_labels=["Q transfer", "energy transfer"], x_units=["1/Angstroms", "ueV"], split=config.split, Q_filter=False, configure=config) if tim is not None: tim.getTime(msg="After creation of final spectrum ") del d_som4 # Steps 33 to 36: Create S(-cos(polar), E) elif config.ncospol_bins is not None: if config.verbose: print "Convert wavelength to energy transfer" if tim is not None: tim.getTime(False) d_som4a = dr_lib.energy_transfer(d_som4, "IGS", "Wavelength_final", sa_norm=True, scale=True, change_units=True) if tim is not None: tim.getTime(msg="After wavelength to energy transfer conversion ") del d_som4 if config.verbose: print "Creating 2D spectrum" if tim is not None: tim.getTime(False) d_som5 = dr_lib.create_param_vs_Y( d_som4a, "polar", "negcos_param_array", config.ncospol_bins.toNessiList(), rebin_axis=config.E_bins.toNessiList(), y_label="counts", y_units="counts / ueV", x_labels=["-cos(polar)", "Energy Transfer"], x_units=["", "ueV"]) if tim is not None: tim.getTime(msg="After creation of final spectrum ") # If rescaling factor present, rescale the data if config.rescale_final is not None and not config.split: d_som6 = common_lib.mult_ncerr(d_som5, (config.rescale_final, 0.0)) else: d_som6 = d_som5 if tim is None: old_time = None if not __name__ == "amorphous_reduction_sqe": del d_som5 __write_output(d_som6, config, tim, old_time) else: if config.create_output: del d_som5 __write_output(d_som6, config, tim, old_time) else: return d_som6
def run(config): """ This method is where the processing is done. @param config: Object containing the driver configuration information. @type config: L{hlr_utils.Configure} """ if config.data is None: raise RuntimeError("Need to pass a data filename to the driver "\ +"script.") dst_type = hlr_utils.file_peeker(config.data[0]) if dst_type != "text/Dave2d": raise TypeError("Only Dave2D ASCII files can be handled. Do not "\ +"know how to handle %s." % dst_type) spectra = [] # Read in all data files for datafile in config.data: spectra.append(dr_lib.add_files([datafile], dst_type=dst_type, Verbose=config.verbose)) # Sort spectra on slowest axis (Q for BSS files) spectra.sort(lambda x, y: cmp(x[0].axis[0].val[0], y[0].axis[0].val[0])) # Create placeholder for combined spectrum Ny = len(spectra) Nx = len(spectra[0][0].axis[1].val) import nessi_list import SOM result = SOM.SOM() result = hlr_utils.copy_som_attr(result, "SOM", spectra[0], "SOM") so = SOM.SO(2) so.id = 0 so.y = nessi_list.NessiList(Nx * Ny) so.var_y = nessi_list.NessiList(Nx * Ny) so.axis[1].val = spectra[0][0].axis[1].val # Make the slowest axis slow_axis = [x[0].axis[0].val[0] for x in spectra] so.axis[0].val = nessi_list.NessiList() so.axis[0].val.extend(slow_axis) # Create combined spectrum import array_manip for i in xrange(Ny): value = hlr_utils.get_value(spectra[i], 0, "SOM", "y") err2 = hlr_utils.get_err2(spectra[i], 0, "SOM", "y") start = i * Nx (so.y, so.var_y) = array_manip.add_ncerr(so.y, so.var_y, value, err2, a_start=start) result.append(so) # Rescale data if necessary if config.rescale is not None: import common_lib result2 = common_lib.mult_ncerr(result, (config.rescale, 0.0)) else: result2 = result del result hlr_utils.write_file(config.output, dst_type, result2, verbose=config.verbose, replace_ext=False, path_replacement=config.path_replacement, axis_ok=True, message="combined file")
def run(config): """ This method is where the processing is done. @param config: Object containing the driver configuration information. @type config: L{hlr_utils.Configure} """ if config.data is None: raise RuntimeError("Need to pass a data filename to the driver "\ +"script.") dst_type = hlr_utils.file_peeker(config.data[0]) if dst_type != "text/Dave2d": raise TypeError("Only Dave2D ASCII files can be handled. Do not "\ +"know how to handle %s." % dst_type) spectra = [] # Read in all data files for datafile in config.data: spectra.append( dr_lib.add_files([datafile], dst_type=dst_type, Verbose=config.verbose)) # Sort spectra on slowest axis (Q for BSS files) spectra.sort(lambda x, y: cmp(x[0].axis[0].val[0], y[0].axis[0].val[0])) # Create placeholder for combined spectrum Ny = len(spectra) Nx = len(spectra[0][0].axis[1].val) import nessi_list import SOM result = SOM.SOM() result = hlr_utils.copy_som_attr(result, "SOM", spectra[0], "SOM") so = SOM.SO(2) so.id = 0 so.y = nessi_list.NessiList(Nx * Ny) so.var_y = nessi_list.NessiList(Nx * Ny) so.axis[1].val = spectra[0][0].axis[1].val # Make the slowest axis slow_axis = [x[0].axis[0].val[0] for x in spectra] so.axis[0].val = nessi_list.NessiList() so.axis[0].val.extend(slow_axis) # Create combined spectrum import array_manip for i in xrange(Ny): value = hlr_utils.get_value(spectra[i], 0, "SOM", "y") err2 = hlr_utils.get_err2(spectra[i], 0, "SOM", "y") start = i * Nx (so.y, so.var_y) = array_manip.add_ncerr(so.y, so.var_y, value, err2, a_start=start) result.append(so) # Rescale data if necessary if config.rescale is not None: import common_lib result2 = common_lib.mult_ncerr(result, (config.rescale, 0.0)) else: result2 = result del result hlr_utils.write_file(config.output, dst_type, result2, verbose=config.verbose, replace_ext=False, path_replacement=config.path_replacement, axis_ok=True, message="combined file")
def process_igs_data(datalist, conf, **kwargs): """ This function combines Steps 1 through 8 of the data reduction process for Inverse Geometry Spectrometers as specified by the documents at U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The function takes a list of file names, a L{hlr_utils.Configure} object and processes the data accordingly. This function should really only be used in the context of I{amorphous_reduction} and I{calc_norm_eff}. @param datalist: A list containing the filenames of the data to be processed. @type datalist: C{list} of C{string}s @param conf: Object that contains the current setup of the driver. @type conf: L{hlr_utils.Configure} @param kwargs: A list of keyword arguments that the function accepts: @keyword inst_geom_dst: File object that contains instrument geometry information. @type inst_geom_dst: C{DST.GeomDST} @keyword dataset_type: The practical name of the dataset being processed. The default value is I{data}. @type dataset_type: C{string} @keyword tib_const: Object providing the time-independent background constant to subtract. @type tib_const: L{hlr_utils.DrParameter} @keyword bkg_som: Object that will be used for early background subtraction @type bkg_som: C{SOM.SOM} @keyword timer: Timing object so the function can perform timing estimates. @type timer: C{sns_timer.DiffTime} @return: Object that has undergone all requested processing steps @rtype: C{SOM.SOM} """ import hlr_utils # Check keywords try: dataset_type = kwargs["dataset_type"] except KeyError: dataset_type = "data" try: t = kwargs["timer"] except KeyError: t = None try: if kwargs["tib_const"] is not None: tib_const = kwargs["tib_const"].toValErrTuple() else: tib_const = None except KeyError: tib_const = None try: i_geom_dst = kwargs["inst_geom_dst"] except KeyError: i_geom_dst = None try: bkg_som = kwargs["bkg_som"] except KeyError: bkg_som = None # Step 1: Open appropriate data files if not conf.mc: so_axis = "time_of_flight" else: so_axis = "Time_of_Flight" # Add so_axis to Configure object conf.so_axis = so_axis if conf.verbose: print "Reading %s file" % dataset_type # Special case handling for normalization data. Dynamically trying to # determine if incoming file is a previously calculated one. if dataset_type == "normalization": try: # Check the first incoming file dst_type = hlr_utils.file_peeker(datalist[0]) # If file_peeker succeeds, the DST is different than the function # returns dst_type = "text/num-info" # Let ROI file handle filtering data_paths = None except RuntimeError: # It's a NeXus file dst_type = "application/x-NeXus" data_paths = conf.data_paths.toPath() else: dst_type = "application/x-NeXus" data_paths = conf.data_paths.toPath() # The [0] is to get the data SOM and ignore the None background SOM dp_som0 = dr_lib.add_files( datalist, Data_Paths=data_paths, SO_Axis=so_axis, Signal_ROI=conf.roi_file, dataset_type=dataset_type, dst_type=dst_type, Verbose=conf.verbose, Timer=t, ) if t is not None: t.getTime(msg="After reading %s " % dataset_type) if dst_type == "text/num-info": # Since we have a pre-calculated normalization dataset, set the flag # and return the SOM now conf.pre_norm = True # Make the labels and units compatible with a NeXus file based SOM dp_som0.setAxisLabel(0, "wavelength") dp_som0.setAxisUnits(0, "Angstroms") dp_som0.setYUnits("Counts/A") return dp_som0 else: if dataset_type == "normalization": # Since we have a NeXus file, we need to continue conf.pre_norm = False # Cut the spectra if necessary dp_somA = dr_lib.cut_spectra(dp_som0, conf.tof_cut_min, conf.tof_cut_max) del dp_som0 dp_som1 = dr_lib.fix_bin_contents(dp_somA) del dp_somA if conf.inst_geom is not None: i_geom_dst.setGeometry(conf.data_paths.toPath(), dp_som1) if conf.no_mon_norm: dm_som1 = None else: if conf.verbose: print "Reading in monitor data from %s file" % dataset_type # The [0] is to get the data SOM and ignore the None background SOM dm_som0 = dr_lib.add_files( datalist, Data_Paths=conf.mon_path.toPath(), SO_Axis=so_axis, dataset_type=dataset_type, Verbose=conf.verbose, Timer=t, ) if t is not None: t.getTime(msg="After reading monitor data ") dm_som1 = dr_lib.fix_bin_contents(dm_som0) del dm_som0 if conf.inst_geom is not None: i_geom_dst.setGeometry(conf.mon_path.toPath(), dm_som1) if bkg_som is not None: bkg_pcharge = bkg_som.attr_list["background-proton_charge"].getValue() data_pcharge = dp_som1.attr_list[dataset_type + "-proton_charge"].getValue() ratio = data_pcharge / bkg_pcharge bkg_som1 = common_lib.mult_ncerr(bkg_som, (ratio, 0.0)) del bkg_som dp_som2 = dr_lib.subtract_bkg_from_data( dp_som1, bkg_som1, verbose=conf.verbose, timer=t, dataset1=dataset_type, dataset2="background" ) else: dp_som2 = dp_som1 del dp_som1 # Step 2: Dead Time Correction # No dead time correction is being applied to the data yet # Step 3: Time-independent background determination if conf.verbose and conf.tib_tofs is not None: print "Determining time-independent background from data" if t is not None and conf.tib_tofs is not None: t.getTime(False) B = dr_lib.determine_time_indep_bkg(dp_som2, conf.tib_tofs) if t is not None and B is not None: t.getTime(msg="After determining time-independent background ") if conf.dump_tib and B is not None: file_comment = "TOFs: %s" % conf.tib_tofs hlr_utils.write_file( conf.output, "text/num-info", B, output_ext="tib", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="time-independent background " + "information", tag="Average", units="counts", comments=[file_comment], ) # Step 4: Subtract time-independent background if conf.verbose and B is not None: print "Subtracting time-independent background from data" if t is not None: t.getTime(False) if B is not None: dp_som3 = common_lib.sub_ncerr(dp_som2, B) else: dp_som3 = dp_som2 if B is not None and t is not None: t.getTime(msg="After subtracting time-independent background ") del dp_som2, B # Step 5: Subtract time-independent background constant if conf.verbose and tib_const is not None: print "Subtracting time-independent background constant from data" if t is not None and tib_const is not None: t.getTime(False) if tib_const is not None: dp_som4 = common_lib.sub_ncerr(dp_som3, tib_const) else: dp_som4 = dp_som3 if t is not None and tib_const is not None: t.getTime(msg="After subtracting time-independent background " + "constant ") del dp_som3 # Provide override capability for final wavelength, time-zero slope and # time-zero offset if conf.wavelength_final is not None: dp_som4.attr_list["Wavelength_final"] = conf.wavelength_final.toValErrTuple() # Note: time_zero_slope MUST be a tuple if conf.time_zero_slope is not None: dp_som4.attr_list["Time_zero_slope"] = conf.time_zero_slope.toValErrTuple() if dm_som1 is not None: dm_som1.attr_list["Time_zero_slope"] = conf.time_zero_slope.toValErrTuple() # Note: time_zero_offset MUST be a tuple if conf.time_zero_offset is not None: dp_som4.attr_list["Time_zero_offset"] = conf.time_zero_offset.toValErrTuple() if dm_som1 is not None: dm_som1.attr_list["Time_zero_offset"] = conf.time_zero_offset.toValErrTuple() # Step 6: Convert TOF to wavelength for data and monitor if conf.verbose: print "Converting TOF to wavelength" if t is not None: t.getTime(False) # Convert monitor if dm_som1 is not None: dm_som2 = common_lib.tof_to_wavelength_lin_time_zero(dm_som1, units="microsecond") else: dm_som2 = None # Convert detector pixels dp_som5 = common_lib.tof_to_initial_wavelength_igs_lin_time_zero( dp_som4, units="microsecond", run_filter=conf.filter ) if t is not None: t.getTime(msg="After converting TOF to wavelength ") if conf.dump_wave: hlr_utils.write_file( conf.output, "text/Spec", dp_som5, output_ext="pxl", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="pixel wavelength information", ) if conf.dump_mon_wave and dm_som2 is not None: hlr_utils.write_file( conf.output, "text/Spec", dm_som2, output_ext="mxl", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="monitor wavelength information", ) del dp_som4, dm_som1 # Step 7: Efficiency correct monitor if conf.verbose and dm_som2 is not None and not conf.no_mon_effc: print "Efficiency correct monitor data" if t is not None: t.getTime(False) if not conf.no_mon_effc: dm_som3 = dr_lib.feff_correct_mon(dm_som2) else: dm_som3 = dm_som2 if t is not None and dm_som2 is not None and not conf.no_mon_effc: t.getTime(msg="After efficiency correcting monitor ") if conf.dump_mon_effc and not conf.no_mon_effc and dm_som3 is not None: hlr_utils.write_file( conf.output, "text/Spec", dm_som3, output_ext="mel", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="monitor wavelength information " + "(efficiency)", ) del dm_som2 # Step 8: Rebin monitor axis onto detector pixel axis if conf.verbose and dm_som3 is not None: print "Rebin monitor axis to detector pixel axis" if t is not None: t.getTime(False) dm_som4 = dr_lib.rebin_monitor(dm_som3, dp_som5) if t is not None and dm_som4 is not None: t.getTime(msg="After rebinning monitor ") del dm_som3 if conf.dump_mon_rebin and dm_som4 is not None: hlr_utils.write_file( conf.output, "text/Spec", dm_som4, output_ext="mrl", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message="monitor wavelength information " + "(rebinned)", ) # The lambda-dependent background is only done on sample data (aka data) # for the BSS instrument at the SNS if conf.inst == "BSS" and conf.ldb_const is not None and dataset_type == "data": # Step 9: Convert chopper center wavelength to TOF center if conf.verbose: print "Converting chopper center wavelength to TOF" if t is not None: t.getTime(False) tof_center = dr_lib.convert_single_to_list( "initial_wavelength_igs_lin_time_zero_to_tof", conf.chopper_lambda_cent.toValErrTuple(), dp_som5 ) # Step 10: Calculate beginning and end of detector TOF spectrum if conf.verbose: print "Calculating beginning and ending TOF ranges" half_inv_chop_freq = 0.5 / conf.chopper_freq.toValErrTuple()[0] # Above is in seconds, need microseconds half_inv_chop_freq *= 1.0e6 tof_begin = common_lib.sub_ncerr(tof_center, (half_inv_chop_freq, 0.0)) tof_end = common_lib.add_ncerr(tof_center, (half_inv_chop_freq, 0.0)) # Step 11: Convert TOF_begin and TOF_end to wavelength if conf.verbose: print "Converting TOF_begin and TOF_end to wavelength" # Check for time-zero slope information try: tz_slope = conf.time_zero_slope.toValErrTuple() except AttributeError: tz_slope = (0.0, 0.0) # Check for time-zero offset information try: tz_offset = conf.time_zero_offset.toValErrTuple() except AttributeError: tz_offset = (0.0, 0.0) l_begin = common_lib.tof_to_initial_wavelength_igs_lin_time_zero( tof_begin, time_zero_slope=tz_slope, time_zero_offset=tz_offset, iobj=dp_som5, run_filter=False ) l_end = common_lib.tof_to_initial_wavelength_igs_lin_time_zero( tof_end, time_zero_slope=tz_slope, time_zero_offset=tz_offset, iobj=dp_som5, run_filter=False ) # Step 12: tof-least-bkg to lambda-least-bkg if conf.verbose: print "Converting TOF least background to wavelength" lambda_least_bkg = dr_lib.convert_single_to_list( "tof_to_initial_wavelength_igs_lin_time_zero", conf.tof_least_bkg.toValErrTuple(), dp_som5 ) if t is not None: t.getTime(msg="After converting boundary positions ") # Step 13: Create lambda-dependent background spectrum if conf.verbose: print "Creating lambda-dependent background spectra" if t is not None: t.getTime(False) ldb_som = dr_lib.shift_spectrum(dm_som4, lambda_least_bkg, l_begin, l_end, conf.ldb_const.getValue()) if t is not None: t.getTime(msg="After creating lambda-dependent background " + "spectra ") # Step 14: Subtract lambda-dependent background from sample data if conf.verbose: print "Subtracting lambda-dependent background from data" if t is not None: t.getTime(False) dp_som6 = common_lib.sub_ncerr(dp_som5, ldb_som) if t is not None: t.getTime(msg="After subtracting lambda-dependent background " + "from data ") else: dp_som6 = dp_som5 del dp_som5 # Step 15: Normalize data by monitor if conf.verbose and dm_som4 is not None: print "Normalizing data by monitor" if t is not None: t.getTime(False) if dm_som4 is not None: dp_som7 = common_lib.div_ncerr(dp_som6, dm_som4) if t is not None: t.getTime(msg="After normalizing data by monitor ") else: dp_som7 = dp_som6 if conf.dump_wave_mnorm: dp_som7_1 = dr_lib.sum_all_spectra(dp_som7, rebin_axis=conf.lambda_bins.toNessiList()) write_message = "combined pixel wavelength information" if dm_som4 is not None: write_message += " (monitor normalized)" hlr_utils.write_file( conf.output, "text/Spec", dp_som7_1, output_ext="pml", extra_tag=dataset_type, verbose=conf.verbose, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, message=write_message, ) del dp_som7_1 del dm_som4, dp_som6 return dp_som7
def process_dgs_data(obj, conf, bcan, ecan, tcoeff, **kwargs): """ This function combines Steps 7 through 16 in Section 2.1.1 of the data reduction process for Direct Geometry Spectrometers as specified by the document at U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The function takes a calibrated dataset, a L{hlr_utils.Configure} object and processes the data accordingly. @param obj: A calibrated dataset object. @type obj: C{SOM.SOM} @param conf: Object that contains the current setup of the driver. @type conf: L{hlr_utils.Configure} @param bcan: The object containing the black can data. @type bcan: C{SOM.SOM} @param ecan: The object containing the empty can data. @type ecan: C{SOM.SOM} @param tcoeff: The transmission coefficient appropriate to the given data set. @type tcoeff: C{tuple} @param kwargs: A list of keyword arguments that the function accepts: @keyword dataset_type: The practical name of the dataset being processed. The default value is I{data}. @type dataset_type: C{string} @keyword cwp_used: A flag signalling the use of the chopper phase corrections. @type cwp_used: C{bool} @keyword timer: Timing object so the function can perform timing estimates. @type timer: C{sns_timer.DiffTime} @return: Object that has undergone all requested processing steps @rtype: C{SOM.SOM} """ import array_manip import common_lib import dr_lib import hlr_utils # Check keywords try: dataset_type = kwargs["dataset_type"] except KeyError: dataset_type = "data" try: t = kwargs["timer"] except KeyError: t = None cwp_used = kwargs.get("cwp_used", False) if conf.verbose: print "Processing %s information" % dataset_type # Step 7: Create black can background contribution if bcan is not None: if conf.verbose: print "Creating black can background contribution for %s" \ % dataset_type if t is not None: t.getTime(False) bccoeff = array_manip.sub_ncerr(1.0, 0.0, tcoeff[0], tcoeff[1]) bcan1 = common_lib.mult_ncerr(bcan, bccoeff) if t is not None: t.getTime(msg="After creating black can background contribution ") del bcan else: bcan1 = None # Step 8: Create empty can background contribution if ecan is not None: if conf.verbose: print "Creating empty can background contribution for %s" \ % dataset_type if t is not None: t.getTime(False) ecan1 = common_lib.mult_ncerr(ecan, tcoeff) if t is not None: t.getTime(msg="After creating empty can background contribution ") del ecan else: ecan1 = None # Step 9: Create background spectra if bcan1 is not None or ecan1 is not None and conf.verbose: print "Creating background spectra for %s" % dataset_type if bcan1 is not None and ecan1 is not None: if cwp_used: if conf.verbose: print "Rebinning empty can to black can axis." ecan2 = common_lib.rebin_axis_1D_frac(ecan1, bcan1[0].axis[0].val) else: ecan2 = ecan1 del ecan1 if t is not None: t.getTime(False) b_som = common_lib.add_ncerr(bcan1, ecan2) if t is not None: t.getTime(msg="After creating background spectra ") elif bcan1 is not None and ecan1 is None: b_som = bcan1 elif bcan1 is None and ecan1 is not None: b_som = ecan1 else: b_som = None del bcan1, ecan1 if cwp_used: if conf.verbose: print "Rebinning background spectra to %s" % dataset_type b_som1 = common_lib.rebin_axis_1D_frac(b_som, obj[0].axis[0].val) else: b_som1 = b_som del b_som if conf.dump_ctof_comb and b_som1 is not None: b_som_1 = dr_lib.sum_all_spectra(b_som1) hlr_utils.write_file(conf.output, "text/Spec", b_som_1, output_ext="ctof", extra_tag="background", data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, verbose=conf.verbose, message="combined background TOF information") del b_som_1 # Step 10: Subtract background from data obj1 = dr_lib.subtract_bkg_from_data(obj, b_som1, verbose=conf.verbose, timer=t, dataset1=dataset_type, dataset2="background") del obj, b_som1 # Step 11: Calculate initial velocity if conf.verbose: print "Calculating initial velocity" if t is not None: t.getTime(False) if conf.initial_energy is not None: initial_wavelength = common_lib.energy_to_wavelength(\ conf.initial_energy.toValErrTuple()) initial_velocity = common_lib.wavelength_to_velocity(\ initial_wavelength) else: # This should actually calculate it, but don't have a way right now pass if t is not None: t.getTime(msg="After calculating initial velocity ") # Step 12: Calculate the time-zero offset if conf.time_zero_offset is not None: time_zero_offset = conf.time_zero_offset.toValErrTuple() else: # This should actually calculate it, but don't have a way right now time_zero_offset = (0.0, 0.0) # Step 13: Convert time-of-flight to final velocity if conf.verbose: print "Converting TOF to final velocity DGS" if t is not None: t.getTime(False) obj2 = common_lib.tof_to_final_velocity_dgs(obj1, initial_velocity, time_zero_offset, units="microsecond") if t is not None: t.getTime(msg="After calculating TOF to final velocity DGS ") del obj1 # Step 14: Convert final velocity to final wavelength if conf.verbose: print "Converting final velocity DGS to final wavelength" if t is not None: t.getTime(False) obj3 = common_lib.velocity_to_wavelength(obj2) if t is not None: t.getTime(msg="After calculating velocity to wavelength ") del obj2 if conf.dump_wave_comb: obj3_1 = dr_lib.sum_all_spectra(obj3, rebin_axis=conf.lambda_bins.toNessiList()) hlr_utils.write_file(conf.output, "text/Spec", obj3_1, output_ext="fwv", extra_tag=dataset_type, data_ext=conf.ext_replacement, path_replacement=conf.path_replacement, verbose=conf.verbose, message="combined final wavelength information") del obj3_1 # Step 15: Create the detector efficiency if conf.det_eff is not None: if conf.verbose: print "Creating detector efficiency spectra" if t is not None: t.getTime(False) det_eff = dr_lib.create_det_eff(obj3) if t is not None: t.getTime(msg="After creating detector efficiency spectra ") else: det_eff = None # Step 16: Divide the detector pixel spectra by the detector efficiency if det_eff is not None: if conf.verbose: print "Correcting %s for detector efficiency" % dataset_type if t is not None: t.getTime(False) obj4 = common_lib.div_ncerr(obj3, det_eff) if t is not None: t.getTime(msg="After correcting %s for detector efficiency" \ % dataset_type) else: obj4 = obj3 del obj3, det_eff return obj4