Exemple #1
0
    def test_fuse_module_train(self):
        model = ModelForFusion(default_qat_qconfig).train()
        # Test step by step fusion
        model = fuse_modules(model, ['conv1', 'bn1', 'relu1'])
        model = fuse_modules(model, ['sub1.conv', 'sub1.bn'])
        self.assertEqual(type(model.conv1), nni.ConvBnReLU2d,
                         "Fused Conv + BN + Relu first layer")
        self.assertEqual(type(model.bn1), torch.nn.Identity,
                         "Fused Conv + BN + Relu (skipped BN)")
        self.assertEqual(type(model.relu1), torch.nn.Identity,
                         "Fused Conv + BN + Relu (skipped Relu)")

        self.assertEqual(type(model.sub1.conv), nni.ConvBn2d,
                         "Fused submodule Conv + BN")
        self.assertEqual(type(model.sub1.bn), torch.nn.Identity,
                         "Fused submodule Conv + BN (skipped BN)")
        self.assertEqual(type(model.sub2.conv), torch.nn.Conv2d,
                         "Non-fused submodule Conv")
        self.assertEqual(type(model.sub2.relu), torch.nn.ReLU,
                         "Non-fused submodule ReLU")
        model = prepare_qat(model)
        self.checkObservers(model)

        def checkQAT(model):
            self.assertEqual(type(model.conv1), nniqat.ConvBnReLU2d)
            self.assertEqual(type(model.bn1), nn.Identity)
            self.assertEqual(type(model.relu1), nn.Identity)
            self.assertEqual(type(model.sub1.conv), nniqat.ConvBn2d)
            self.assertEqual(type(model.sub1.bn), nn.Identity)
            self.assertEqual(type(model.sub2.conv), nn.Conv2d)
            self.assertEqual(type(model.sub2.relu), nn.ReLU)

        checkQAT(model)
        test_only_train_fn(model, self.img_data)
        model = convert(model)

        def checkQuantized(model):
            self.assertEqual(type(model.conv1), nniq.ConvReLU2d)
            self.assertEqual(type(model.bn1), nn.Identity)
            self.assertEqual(type(model.relu1), nn.Identity)
            self.assertEqual(type(model.sub1.conv), nnq.Conv2d)
            self.assertEqual(type(model.sub1.bn), nn.Identity)
            self.assertEqual(type(model.sub2.conv), nn.Conv2d)
            self.assertEqual(type(model.sub2.relu), nn.ReLU)
            test_only_eval_fn(model, self.img_data)

        checkQuantized(model)

        model = ModelForFusion(default_qat_qconfig).train()
        model = fuse_modules(
            model, [['conv1', 'bn1', 'relu1'], ['sub1.conv', 'sub1.bn']])
        model = quantize_qat(model, test_only_train_fn, self.img_data)
        checkQuantized(model)
Exemple #2
0
    def test_manual(self):
        model = ManualLinearQATModel()
        model = prepare_qat(model)
        self.checkObservers(model)
        test_only_train_fn(model, self.train_data)
        convert(model)

        def checkQuantized(model):
            self.assertEqual(type(model.fc1), nnq.Linear)
            self.assertEqual(type(model.fc2), nnq.Linear)
            test_only_eval_fn(model, self.calib_data)
            self.checkScriptable(model, self.calib_data)

        checkQuantized(model)

        model = quantize_qat(ManualLinearQATModel(), test_only_train_fn, self.train_data)
        checkQuantized(model)
Exemple #3
0
    def test_conv_linear(self):
        model = ManualConvLinearQATModel()

        model = prepare_qat(model)
        self.checkObservers(model)

        test_only_train_fn(model, self.img_data)
        convert(model)

        def checkQuantized(model):
            self.assertEqual(type(model.conv), nnq.Conv2d)
            self.assertEqual(type(model.fc1), nnq.Linear)
            self.assertEqual(type(model.fc2), nnq.Linear)
            test_only_eval_fn(model, self.img_data)

        checkQuantized(model)

        model = ManualConvLinearQATModel()
        model = quantize_qat(model, test_only_train_fn, self.img_data)
        checkQuantized(model)