def test_video_model(model_fn, dev): set_rng_seed(0) # the default input shape is # bs * num_channels * clip_len * h *w defaults = { "input_shape": (1, 3, 4, 112, 112), "num_classes": 50, } model_name = model_fn.__name__ kwargs = {**defaults, **_model_params.get(model_name, {})} num_classes = kwargs.get("num_classes") input_shape = kwargs.pop("input_shape") # test both basicblock and Bottleneck model = model_fn(**kwargs) model.eval().to(device=dev) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) out = model(x) _assert_expected(out.cpu(), model_name, prec=0.1) assert out.shape[-1] == num_classes _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out) _check_fx_compatible(model, x, eager_out=out) assert out.shape[-1] == num_classes if dev == "cuda": with torch.cuda.amp.autocast(): out = model(x) # See autocast_flaky_numerics comment at top of file. if model_name not in autocast_flaky_numerics: _assert_expected(out.cpu(), model_name, prec=0.1) assert out.shape[-1] == num_classes _check_input_backprop(model, x)
def test_raft_stereo(model_builder, model_mode, dev): # A simple test to make sure the model can do forward pass and jit scriptable set_rng_seed(0) # Use corr_pyramid and corr_block with smaller num_levels and radius to prevent nan output # get the idea from test_models.test_raft corr_pyramid = raft_stereo.CorrPyramid1d(num_levels=2) corr_block = raft_stereo.CorrBlock1d(num_levels=2, radius=2) model = model_builder(corr_pyramid=corr_pyramid, corr_block=corr_block).eval().to(dev) if model_mode == "scripted": model = torch.jit.script(model) img1 = torch.rand(1, 3, 64, 64).to(dev) img2 = torch.rand(1, 3, 64, 64).to(dev) num_iters = 3 preds = model(img1, img2, num_iters=num_iters) depth_pred = preds[-1] assert len(preds) == num_iters, "Number of predictions should be the same as model.num_iters" assert depth_pred.shape == torch.Size( [1, 1, 64, 64] ), f"The output shape of depth_pred should be [1, 1, 64, 64] but instead it is {preds[0].shape}" # Test against expected file output TM._assert_expected(depth_pred, name=model_builder.__name__, atol=1e-2, rtol=1e-2)
def test_classification_model(model_fn, dev): set_rng_seed(0) defaults = { "num_classes": 50, "input_shape": (1, 3, 224, 224), } model_name = model_fn.__name__ kwargs = {**defaults, **_model_params.get(model_name, {})} num_classes = kwargs.get("num_classes") input_shape = kwargs.pop("input_shape") model = model_fn(**kwargs) model.eval().to(device=dev) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) out = model(x) _assert_expected(out.cpu(), model_name, prec=0.1) assert out.shape[-1] == num_classes _check_jit_scriptable(model, (x, ), unwrapper=script_model_unwrapper.get( model_name, None)) _check_fx_compatible(model, x) if dev == torch.device("cuda"): with torch.cuda.amp.autocast(): out = model(x) # See autocast_flaky_numerics comment at top of file. if model_name not in autocast_flaky_numerics: _assert_expected(out.cpu(), model_name, prec=0.1) assert out.shape[-1] == 50 _check_input_backprop(model, x)
def test_rpn(self): set_rng_seed(0) class RPNModule(torch.nn.Module): def __init__(self_module): super(RPNModule, self_module).__init__() self_module.rpn = self._init_test_rpn() def forward(self_module, images, features): images = ImageList(images, [i.shape[-2:] for i in images]) return self_module.rpn(images, features) images = torch.rand(2, 3, 150, 150) features = self.get_features(images) images2 = torch.rand(2, 3, 80, 80) test_features = self.get_features(images2) model = RPNModule() model.eval() model(images, features) self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True, input_names=[ "input1", "input2", "input3", "input4", "input5", "input6" ], dynamic_axes={ "input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3], "input3": [0, 1, 2, 3], "input4": [0, 1, 2, 3], "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3] })
def test_detection_model_validation(model_fn): set_rng_seed(0) model = model_fn(num_classes=50, weights=None, weights_backbone=None) input_shape = (3, 300, 300) x = [torch.rand(input_shape)] # validate that targets are present in training with pytest.raises(AssertionError): model(x) # validate type targets = [{"boxes": 0.0}] with pytest.raises(AssertionError): model(x, targets=targets) # validate boxes shape for boxes in (torch.rand((4,)), torch.rand((1, 5))): targets = [{"boxes": boxes}] with pytest.raises(AssertionError): model(x, targets=targets) # validate that no degenerate boxes are present boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]]) targets = [{"boxes": boxes}] with pytest.raises(AssertionError): model(x, targets=targets)
def test_build_fx_feature_extractor(self, model_name): set_rng_seed(0) model = models.__dict__[model_name](**self.model_defaults).eval() train_return_nodes, eval_return_nodes = self._get_return_nodes(model) # Check that it works with both a list and dict for return nodes self._create_feature_extractor( model, train_return_nodes={v: v for v in train_return_nodes}, eval_return_nodes=eval_return_nodes ) self._create_feature_extractor( model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes ) # Check must specify return nodes with pytest.raises(AssertionError): self._create_feature_extractor(model) # Check return_nodes and train_return_nodes / eval_return nodes # mutual exclusivity with pytest.raises(AssertionError): self._create_feature_extractor( model, return_nodes=train_return_nodes, train_return_nodes=train_return_nodes ) # Check train_return_nodes / eval_return nodes must both be specified with pytest.raises(AssertionError): self._create_feature_extractor(model, train_return_nodes=train_return_nodes) # Check invalid node name raises ValueError with pytest.raises(ValueError): # First just double check that this node really doesn't exist if not any(n.startswith("l") or n.startswith("l.") for n in chain(train_return_nodes, eval_return_nodes)): self._create_feature_extractor(model, train_return_nodes=["l"], eval_return_nodes=["l"]) else: # otherwise skip this check raise ValueError
def _get_return_nodes(self, model): set_rng_seed(0) exclude_nodes_filter = [ "getitem", "floordiv", "size", "chunk", "_assert", "eq", "dim", "getattr", ] train_nodes, eval_nodes = get_graph_node_names( model, tracer_kwargs={"leaf_modules": self.leaf_modules}, suppress_diff_warning=True) # Get rid of any nodes that don't return tensors as they cause issues # when testing backward pass. train_nodes = [ n for n in train_nodes if not any(x in n for x in exclude_nodes_filter) ] eval_nodes = [ n for n in eval_nodes if not any(x in n for x in exclude_nodes_filter) ] return random.sample(train_nodes, 10), random.sample(eval_nodes, 10)
def test_classification_model(model_fn, dev): set_rng_seed(0) defaults = { "num_classes": 50, "input_shape": (1, 3, 224, 224), } model_name = model_fn.__name__ if SKIP_BIG_MODEL and model_name in skipped_big_models: pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model") kwargs = {**defaults, **_model_params.get(model_name, {})} num_classes = kwargs.get("num_classes") input_shape = kwargs.pop("input_shape") model = model_fn(**kwargs) model.eval().to(device=dev) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) out = model(x) _assert_expected(out.cpu(), model_name, prec=0.1) assert out.shape[-1] == num_classes _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out) _check_fx_compatible(model, x, eager_out=out) if dev == "cuda": with torch.cuda.amp.autocast(): out = model(x) # See autocast_flaky_numerics comment at top of file. if model_name not in autocast_flaky_numerics: _assert_expected(out.cpu(), model_name, prec=0.1) assert out.shape[-1] == 50 _check_input_backprop(model, x)
def test_detection_model_validation(model_name): set_rng_seed(0) model = models.detection.__dict__[model_name](num_classes=50, pretrained_backbone=False) input_shape = (3, 300, 300) x = [torch.rand(input_shape)] # validate that targets are present in training with pytest.raises(ValueError): model(x) # validate type targets = [{'boxes': 0.}] with pytest.raises(ValueError): model(x, targets=targets) # validate boxes shape for boxes in (torch.rand((4,)), torch.rand((1, 5))): targets = [{'boxes': boxes}] with pytest.raises(ValueError): model(x, targets=targets) # validate that no degenerate boxes are present boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]]) targets = [{'boxes': boxes}] with pytest.raises(ValueError): model(x, targets=targets)
def test_segmentation_model(model_name, dev): set_rng_seed(0) defaults = { 'num_classes': 10, 'pretrained_backbone': False, 'input_shape': (1, 3, 32, 32), } kwargs = {**defaults, **_model_params.get(model_name, {})} input_shape = kwargs.pop('input_shape') model = models.segmentation.__dict__[model_name](**kwargs) model.eval().to(device=dev) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) out = model(x)["out"] def check_out(out): prec = 0.01 try: # We first try to assert the entire output if possible. This is not # only the best way to assert results but also handles the cases # where we need to create a new expected result. _assert_expected(out.cpu(), model_name, prec=prec) except AssertionError: # Unfortunately some segmentation models are flaky with autocast # so instead of validating the probability scores, check that the class # predictions match. expected_file = _get_expected_file(model_name) expected = torch.load(expected_file) torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec) return False # Partial validation performed return True # Full validation performed full_validation = check_out(out) _check_jit_scriptable(model, (x, ), unwrapper=script_model_unwrapper.get( model_name, None)) _check_fx_compatible(model, x) if dev == torch.device("cuda"): with torch.cuda.amp.autocast(): out = model(x)["out"] # See autocast_flaky_numerics comment at top of file. if model_name not in autocast_flaky_numerics: full_validation &= check_out(out) if not full_validation: msg = "The output of {} could only be partially validated. " \ "This is likely due to unit-test flakiness, but you may " \ "want to do additional manual checks if you made " \ "significant changes to the codebase.".format(test_segmentation_model.__name__) warnings.warn(msg, RuntimeWarning) pytest.skip(msg) _check_input_backprop(model, x)
def test_classification_model(model_name, dev): set_rng_seed(0) defaults = { 'num_classes': 50, 'input_shape': (1, 3, 224, 224), } kwargs = {**defaults, **_model_params.get(model_name, {})} input_shape = kwargs.pop('input_shape') model = models.__dict__[model_name](**kwargs) model.eval().to(device=dev) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) out = model(x) _assert_expected(out.cpu(), model_name, prec=0.1) assert out.shape[-1] == 50 _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None)) if dev == torch.device("cuda"): with torch.cuda.amp.autocast(): out = model(x) # See autocast_flaky_numerics comment at top of file. if model_name not in autocast_flaky_numerics: _assert_expected(out.cpu(), model_name, prec=0.1) assert out.shape[-1] == 50
def _test_segmentation_model(self, name, dev): set_rng_seed(0) # passing num_classes equal to a number other than 21 helps in making the test's # expected file size smaller model = models.segmentation.__dict__[name](num_classes=10, pretrained_backbone=False) model.eval().to(device=dev) input_shape = (1, 3, 32, 32) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) out = model(x)["out"] def check_out(out): prec = 0.01 strip_suffix = f"_{dev}" try: # We first try to assert the entire output if possible. This is not # only the best way to assert results but also handles the cases # where we need to create a new expected result. self.assertExpected(out.cpu(), prec=prec, strip_suffix=strip_suffix) except AssertionError: # Unfortunately some segmentation models are flaky with autocast # so instead of validating the probability scores, check that the class # predictions match. expected_file = self._get_expected_file( strip_suffix=strip_suffix) expected = torch.load(expected_file) self.assertEqual(out.argmax(dim=1), expected.argmax(dim=1), prec=prec) return False # Partial validation performed return True # Full validation performed full_validation = check_out(out) self.check_jit_scriptable(model, (x, ), unwrapper=script_model_unwrapper.get( name, None)) if dev == torch.device("cuda"): with torch.cuda.amp.autocast(): out = model(x)["out"] # See autocast_flaky_numerics comment at top of file. if name not in autocast_flaky_numerics: full_validation &= check_out(out) if not full_validation: msg = "The output of {} could only be partially validated. " \ "This is likely due to unit-test flakiness, but you may " \ "want to do additional manual checks if you made " \ "significant changes to the codebase.".format(self._testMethodName) warnings.warn(msg, RuntimeWarning) raise unittest.SkipTest(msg)
def test_jit_forward_backward(self, model_name): set_rng_seed(0) model = models.__dict__[model_name](**self.model_defaults).train() train_return_nodes, eval_return_nodes = self._get_return_nodes(model) model = self._create_feature_extractor( model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes) model = torch.jit.script(model) fgn_out = model(self.inp) sum([o.mean() for o in fgn_out.values()]).backward()
def test_quantized_classification_model(model_fn): set_rng_seed(0) defaults = { "num_classes": 5, "input_shape": (1, 3, 224, 224), "pretrained": False, "quantize": True, } model_name = model_fn.__name__ kwargs = {**defaults, **_model_params.get(model_name, {})} input_shape = kwargs.pop("input_shape") # First check if quantize=True provides models that can run with input data model = model_fn(**kwargs) model.eval() x = torch.rand(input_shape) out = model(x) if model_name not in quantized_flaky_models: _assert_expected(out, model_name + "_quantized", prec=0.1) assert out.shape[-1] == 5 _check_jit_scriptable(model, (x, ), unwrapper=script_model_unwrapper.get( model_name, None)) _check_fx_compatible(model, x) kwargs["quantize"] = False for eval_mode in [True, False]: model = model_fn(**kwargs) if eval_mode: model.eval() model.qconfig = torch.ao.quantization.default_qconfig else: model.train() model.qconfig = torch.ao.quantization.default_qat_qconfig model.fuse_model() if eval_mode: torch.ao.quantization.prepare(model, inplace=True) else: torch.ao.quantization.prepare_qat(model, inplace=True) model.eval() torch.ao.quantization.convert(model, inplace=True) try: torch.jit.script(model) except Exception as e: tb = traceback.format_exc() raise AssertionError( f"model cannot be scripted. Traceback = {str(tb)}") from e
def _get_return_nodes(self, model): set_rng_seed(0) exclude_nodes_filter = ['getitem', 'floordiv', 'size', 'chunk'] train_nodes, eval_nodes = get_graph_node_names( model, tracer_kwargs={'leaf_modules': self.leaf_modules}, suppress_diff_warning=True) # Get rid of any nodes that don't return tensors as they cause issues # when testing backward pass. train_nodes = [ n for n in train_nodes if not any(x in n for x in exclude_nodes_filter) ] eval_nodes = [ n for n in eval_nodes if not any(x in n for x in exclude_nodes_filter) ] return random.sample(train_nodes, 10), random.sample(eval_nodes, 10)
def test_jit_forward_backward(self, model_name): set_rng_seed(0) model = models.__dict__[model_name](**self.model_defaults).train() train_return_nodes, eval_return_nodes = self._get_return_nodes(model) model = self._create_feature_extractor( model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes ) model = torch.jit.script(model) fgn_out = model(self.inp) out_agg = 0 for node_out in fgn_out.values(): if isinstance(node_out, Sequence): out_agg += sum(o.mean() for o in node_out if o is not None) elif isinstance(node_out, Mapping): out_agg += sum(o.mean() for o in node_out.values() if o is not None) else: # Assume that the only other alternative at this point is a Tensor out_agg += node_out.mean() out_agg.backward()
def _test_classification_model(self, name, input_shape, dev): set_rng_seed(0) # passing num_class equal to a number other than 1000 helps in making the test # more enforcing in nature model = models.__dict__[name](num_classes=50) model.eval().to(device=dev) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) out = model(x) self.assertExpected(out.cpu(), name, prec=0.1) self.assertEqual(out.shape[-1], 50) self.check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None)) if dev == torch.device("cuda"): with torch.cuda.amp.autocast(): out = model(x) # See autocast_flaky_numerics comment at top of file. if name not in autocast_flaky_numerics: self.assertExpected(out.cpu(), name, prec=0.1) self.assertEqual(out.shape[-1], 50)
def method_tests(): set_rng_seed(0) return [ ('add', (S, S, S), ((S, S, S),)), ('add', (S, S, S), ((S, S),), 'broadcast_rhs'), ('add', (S, S), ((S, S, S),), 'broadcast_lhs'), ('add', (S, 1, S), ((M, S),), 'broadcast_all'), ('add', (), ((),), 'scalar'), ('add', (S, S, S), ((),), 'scalar_broadcast_rhs'), ('add', (), ((S, S, S),), 'scalar_broadcast_lhs'), ('add', (S, S, S), (3.14,), 'constant'), ('add', (), (3.14,), 'scalar_constant'), ('__radd__', (S, S, S), (3.14,), 'constant'), ('__radd__', (), (3.14,), 'scalar_constant'), ('sub', (S, S, S), ((S, S, S),)), ('sub', (S, S, S), ((S, S),), 'broadcast_rhs'), ('sub', (S, S), ((S, S, S),), 'broadcast_lhs'), ('sub', (S, 1, S), ((M, S),), 'broadcast_all'), ('sub', (S, S, S), ((),), 'scalar_broadcast_rhs'), ('sub', (), ((S, S, S),), 'scalar_broadcast_lhs'), ('sub', (S, S, S), (3.14,), 'constant'), ('sub', (), (3.14,), 'scalar_constant'), ('__rsub__', (S, S, S), (3.14,), 'constant'), ('__rsub__', (), (3.14,), 'scalar_constant'), ('mul', (S, S, S), ((S, S, S),)), ('mul', (), ((),), 'scalar'), ('mul', (S, S, S), ((S, S),), 'broadcast_rhs'), ('mul', (S, S), ((S, S, S),), 'broadcast_lhs'), ('mul', (S, 1, S), ((M, S),), 'broadcast_all'), ('mul', (S, S, S), ((),), 'scalar_broadcast_rhs'), ('mul', (), ((S, S, S),), 'scalar_broadcast_lhs'), ('mul', (S, S, S), (3.14,), 'constant'), ('mul', (), (3.14,), 'scalar_constant'), ('__rmul__', (S, S, S), (3.14,), 'constant'), ('__rmul__', (), (3.14,), 'scalar_constant'), ('div', (S, S, S), (torch.rand(S, S, S) + 0.1,)), ('div', (S, S, S), (torch.rand(S, S) + 0.1,), 'broadcast_rhs'), ('div', (S, S), (torch.rand(S, S, S) + 0.1,), 'broadcast_lhs'), ('div', (S, 1, S), (torch.rand(M, S) + 0.1,), 'broadcast_all'), ('div', (), (uniform_scalar(0.1),), 'scalar'), ('div', (S, S, S), (uniform_scalar(0.1),), 'scalar_broadcast_rhs'), ('div', (), (uniform_scalar(0.1),), 'scalar_broadcast_lhs'), ('div', torch.rand(S, S, S) + 1e-1, (3.14,), 'constant'), ('__rdiv__', torch.rand(S, S, S) + 1e-1, (3.14,), 'constant'), ('div', uniform_scalar(1e-1, requires_grad=True), (3.14,), 'scalar_constant'), ('__rdiv__', uniform_scalar(1e-1, requires_grad=True), (3.14,), 'scalar_constant'), ('pow', torch.rand(S, S, S) + 1e-3, (torch.rand(S, S, S) + 0.1,)), ('pow', torch.rand(S, S, S) + 1e-3, (torch.rand(1,) + 0.1,), 'broadcast_rhs'), ('pow', torch.rand(1,) + 1e-3, (torch.rand(S, S, S) + 0.1,), 'broadcast_lhs'), ('pow', torch.rand(S, 1, S) + 1e-3, (torch.rand(1, S, 1) + 0.1,), 'broadcast_all'), ('pow', uniform_scalar(1e-3, requires_grad=True), (uniform_scalar(0.1),), 'scalar'), ('pow', torch.rand(S, S, S) + 1e-3, (uniform_scalar(0.1),), 'scalar_broadcast_rhs'), ('pow', uniform_scalar(1e-3, requires_grad=True), (torch.rand(S, S, S) + 0.1,), 'scalar_broadcast_lhs'), ('pow', torch.rand(S, S, S) + 1e-3, (3.14,), 'constant'), ('__rpow__', torch.rand(S, S, S) + 1e-3, (3.14,), 'constant'), ('pow', uniform_scalar(1e-3, requires_grad=True), (3.14,), 'scalar_constant'), ('__rpow__', uniform_scalar(1e-3, requires_grad=True), (3.14,), 'scalar_constant'), ('transpose', (1, 2, 3), (1, 2), 'dim', [0, 1]), ('transpose', (), (0, 0), 'scalar'), ('transpose', (1,), (0, 0), '1d'), ('transpose', torch.rand(L, L), (0, 1), '2d'), ('transpose', torch.rand(S, S, S), (2, 0), '3d'), ('t', (1, 2), NO_ARGS), ('view', (S, S, S), (S * S, S),), ('view', (S, S, S), (torch.Size([S * S, S]),), 'size'), ('view', (S,), (S,), '1d'), ('view', (), (dont_convert(()),), 'scalar_to_scalar'), ('view', (), (1,), 'scalar_to_1d'), ('reshape', (S, S, S), (S * S, S),), ('reshape', (S, S, S), (torch.Size([S * S, S]),), 'size'), ('reshape', (S,), (S,), '1d'), ('reshape', (), (dont_convert(()),), 'scalar_to_scalar'), ('reshape', (), (1,), 'scalar_to_1d'), ('reshape_as', (S, S, S), (non_differentiable(torch.rand(S * S, S)),)), ('reshape_as', (), (non_differentiable(torch.tensor(42.)),), 'scalar'), ('reshape_as', (), (non_differentiable(torch.rand(1, 1)),), 'scalar_to_dims'), ('flip', (S, S, S), ([0],), 'd0'), ('flip', (S, S, S), ([0, 1, 2],), 'd012'), ('flip', (S, S, S), ([0, 2],), 'd02'), ('flip', (S, S, S), ([2, 0],), 'd20'), ('flip', (S, S, S), ([-1],), 'neg_d'), ('roll', (S, S, S), (0, 0), 'd0'), ('roll', (S, S, S), (1, 2), 'd12'), ('roll', (S, S, S), (0, 2,), 'd02'), ('roll', (S, S, S), (2, 0,), 'd20'), ('roll', (S, S, S), (-1, 0), 'neg_shift'), ('roll', (S, S, S), (10000, 1), 'loop_shift'), ('roll', (S, S, S), (2,), 'flattened'), ('roll', (S, S, S), ([1, 2, -1], [0, 1, 2]), 'three_dims'), ('rot90', (S, S, S), (1, [0, 1],), 'k1_d01'), ('rot90', (S, S, S), (1, [1, 2],), 'k1_d12'), ('rot90', (S, S, S), (1, [1, -1],), 'k1_neg_d'), ('rot90', (S, S, S), (), 'default'), ('view_as', (S, S, S), (non_differentiable(torch.rand(S * S, S)),)), ('view_as', (), (non_differentiable(torch.tensor(5.5)),), 'scalar'), ('view_as', (), (non_differentiable(torch.rand(1, 1)),), 'scalar_to_dims'), ('expand', (S, 1, 1), (S, S, S)), ('expand', (torch.Size([S, 1, S]),), (S, S, S), 'size'), ('expand', (S, 1), (S, S, S), 'new_dim'), ('expand', (1,), (S, S, S), '1_element'), ('expand', (1, S), (1, 1, S), 'new_dim_front_old_front_1'), ('expand', (), (dont_convert(()),), 'scalar_to_scalar'), ('expand', (), (1, 3, 2), 'scalar_to_dims'), ('exp', (S, S, S), NO_ARGS), ('exp', (), NO_ARGS, 'scalar'), ('expm1', (S, S, S), NO_ARGS), ('expm1', (), NO_ARGS, 'scalar'), ('erf', torch.rand(S, S, S), NO_ARGS), ('erf', uniform_scalar(requires_grad=True), NO_ARGS, 'scalar'), ('erfc', torch.rand(S, S, S), NO_ARGS), ('erfc', uniform_scalar(requires_grad=True), NO_ARGS, 'scalar'), ('erfinv', torch.rand(S, S, S).clamp(-0.9, 0.9), NO_ARGS), ('erfinv', normal_scalar_clamp(-0.9, 0.9, requires_grad=True), NO_ARGS, 'scalar'), ('log', torch.rand(S, S, S) + 1e-2, NO_ARGS), ('log', uniform_scalar(1e-2, requires_grad=True), NO_ARGS, 'scalar'), ('log10', torch.rand(S, S, S) + 1e-2, NO_ARGS), ('log10', uniform_scalar(1e-2, requires_grad=True), NO_ARGS, 'scalar'), ('log1p', torch.rand(S, S, S), NO_ARGS), ('log1p', uniform_scalar(requires_grad=True), NO_ARGS, 'scalar'), ('log2', torch.rand(S, S, S) + 1e-2, NO_ARGS), ('log2', uniform_scalar(1e-2, requires_grad=True), NO_ARGS, 'scalar'), ('tanh', (S, S, S), NO_ARGS), ('tanh', (), NO_ARGS, 'scalar'), ('sigmoid', (S, S, S), NO_ARGS), ('sigmoid', (), NO_ARGS, 'scalar'), ('sinh', (S, S, S), NO_ARGS), ('sinh', (), NO_ARGS, 'scalar'), ('cosh', (S, S, S), NO_ARGS), ('cosh', (), NO_ARGS, 'scalar'), ('abs', (S, S, S), NO_ARGS), ('abs', (), NO_ARGS, 'scalar'), ('clamp', (S, S, S), (0, 1)), ('clamp', (S, S, S), (None, 0.5), 'min'), ('clamp', (S, S, S), (0.5, None), 'max'), ('clamp', (), (0, 1), 'scalar'), ('clamp', (), (None, 0.5), 'min_scalar'), ('clamp', (), (0.5, None), 'max_scalar'), ('sqrt', torch.rand(S, S, S) + 5e-4, NO_ARGS), ('sqrt', uniform_scalar(5e-4, requires_grad=True), NO_ARGS, 'scalar'), ('sin', (S, S, S), NO_ARGS), ('sin', (), NO_ARGS, 'scalar'), ('cos', (S, S, S), NO_ARGS), ('cos', (), NO_ARGS, 'scalar'), ('tan', torch.randn(S, S, S).clamp(-1, 1), NO_ARGS), ('asin', torch.randn(S, S, S).clamp(-0.9, 0.9), NO_ARGS), ('acos', torch.randn(S, S, S).clamp(-0.9, 0.9), NO_ARGS), ('atan', (S, S, S), NO_ARGS), ('atan', (), NO_ARGS, 'scalar'), ('atan2', (S, S, S), ((S, S, S),)), ('atan2', (), ((),), 'scalar'), ('atan2', (S, S, S), ((S,),), 'broadcast_rhs'), ('atan2', (S,), ((S, S, S),), 'broadcast_lhs'), ('atan2', (S, 1, S), ((S, S),), 'broadcast_all'), ('reciprocal', torch.rand(S, S, S) + 0.1, NO_ARGS), ('reciprocal', uniform_scalar(0.1, requires_grad=True), NO_ARGS, 'scalar'), ('round', (S, S, S), NO_ARGS), ('round', (), NO_ARGS, 'scalar'), ('sign', (S, S, S), NO_ARGS), ('sign', (), NO_ARGS, 'scalar'), ('trunc', (S, S, S), NO_ARGS), ('trunc', (), NO_ARGS, 'scalar'), ('floor', (S, S, S), NO_ARGS), ('floor', (), NO_ARGS, 'scalar'), ('ceil', (S, S, S), NO_ARGS), ('ceil', (), NO_ARGS, 'scalar'), ('rsqrt', torch.rand(S, S, S) + 1e-2, NO_ARGS), ('rsqrt', uniform_scalar(1e-2, requires_grad=True), NO_ARGS, 'scalar'), ('frac', (S, S, S), NO_ARGS), ('frac', (), NO_ARGS, 'scalar'), ('fmod', (S, S, S), (1.5,)), ('fmod', (), (1.5,), 'scalar'), ('fmod', (S, S, S), (non_differentiable(torch.rand(S, S, S) + 1.5),), 'tensor'), ('fmod', (S,), (non_differentiable(torch.rand(S, S, S) + 1.5),), 'tensor_broadcast_lhs'), ('fmod', (S, S, S), (non_differentiable(torch.rand(S) + 1.5),), 'tensor_broadcast_rhs'), ('fmod', (S, 1, S), (non_differentiable(torch.rand(S, S) + 1.5),), 'tensor_broadcast_all'), ('fmod', (), (non_differentiable(uniform_scalar(1.5)),), 'scalar_tensor'), ('fmod', (), (non_differentiable(torch.rand(S, S, S) + 1.5),), 'scalar_tensor_broadcast_lhs'), ('fmod', (S, S, S), (non_differentiable(uniform_scalar(1.5)),), 'scalar_tensor_broadcast_rhs'), ('remainder', (S, S, S), (1.5,)), ('remainder', (), (1.5,), 'scalar'), ('remainder', (S, S, S), (non_differentiable(torch.rand(S, S, S) + 1.5),), 'tensor'), ('remainder', (S,), (non_differentiable(torch.rand(S, S, S) + 1.5),), 'tensor_broadcast_lhs'), ('remainder', (S, 1, S), (non_differentiable(torch.rand(S, S) + 1.5),), 'tensor_broadcast_all'), ('remainder', (), (non_differentiable(uniform_scalar(1.5)),), 'scalar_tensor'), ('remainder', (), (non_differentiable(torch.rand(S, S, S) + 1.5),), 'scalar_tensor_broadcast_lhs'), ('lerp', (S, S, S), ((S, S, S), 0.4)), ('lerp', (S, S, S), ((S,), 0.4), 'broadcast_rhs'), ('lerp', (S,), ((S, S, S), 0.4), 'broadcast_lhs'), ('lerp', (S, 1, S), ((S, S), 0.4), 'broadcast_all'), ('lerp', (), ((), 0.4), 'scalar'), ('lerp', (S, S, S), ((), 0.4), 'scalar_broadcast_rhs'), ('lerp', (), ((S, S, S), 0.4), 'scalar_broadcast_lhs'), ('max', (S, S, S), NO_ARGS), ('max', (S, S, S), (1,), 'dim', [0]), ('max', (S, S, S), (1, True,), 'keepdim_dim', [0]), ('max', (), NO_ARGS, 'scalar'), ('max', (), (0,), 'scalar_dim', [0]), ('max', (), (0, True,), 'scalar_keepdim_dim', [0]), ('max', (S, S, S), ((S, S, S),), 'elementwise'), ('max', (S, S, S), ((S,),), 'elementwise_broadcast_rhs'), ('max', (S,), ((S, S, S),), 'elementwise_broadcast_lhs'), ('max', (S, 1, S), ((S, S),), 'elementwise_broadcast_all'), ('max', (), ((),), 'scalar_elementwise'), ('max', (S, S, S), ((),), 'scalar_elementwise_broadcast_rhs'), ('max', (), ((S, S, S),), 'scalar_elementwise_broadcast_lhs'), ('min', (S, S, S), NO_ARGS), ('min', (S, S, S), (1,), 'dim', [0]), ('min', (S, S, S), (1, True,), 'keepdim_dim', [0]), ('min', (), NO_ARGS, 'scalar'), ('min', (), (0,), 'scalar_dim', [0]), ('min', (), (0, True,), 'scalar_keepdim_dim', [0]), ('min', (S, S, S), ((S, S, S),), 'elementwise'), ('min', (S, S, S), ((S,),), 'elementwise_broadcast_rhs'), ('min', (S,), ((S, S, S),), 'elementwise_broadcast_lhs'), ('min', (S, 1, S), ((S, S),), 'elementwise_broadcast_all'), ('min', (), ((),), 'scalar_elementwise'), ('min', (S, S, S), ((),), 'scalar_elementwise_broadcast_rhs'), ('min', (), ((S, S, S),), 'scalar_elementwise_broadcast_lhs'), ('mean', (S, S, S), NO_ARGS), ('mean', (S, S, S), (1,), 'dim', [0]), ('mean', (S, S, S), (1, True,), 'keepdim_dim', [0]), ('mean', (), NO_ARGS, 'scalar'), ('mean', (), (0,), 'scalar_dim', [0]), ('mean', (), (0, True,), 'scalar_keepdim_dim', [0]), ('kthvalue', (S, S, S), (2,)), ('kthvalue', (), (1,), 'scalar'), ('kthvalue', (S, S, S), (2, 1,), 'dim', [1]), ('kthvalue', (), (1, 0,), 'scalar_dim', [1]), ('kthvalue', (S, S, S), (2, 1, True,), 'keepdim_dim', [1]), ('kthvalue', (), (1, 0, True), 'scalar_keepdim_dim', [1]), ('kthvalue', (S,), (2, 0,), 'dim_1d', [1]), ('kthvalue', (S,), (2, 0, True,), 'keepdim_dim_1d', [1]), ('median', (S, S, S), NO_ARGS), ('median', (S, S, S), (1,), 'dim', [0]), ('median', (S, S, S), (1, True,), 'keepdim_dim', [0]), ('median', (), NO_ARGS, 'scalar'), ('median', (), (0,), 'scalar_dim', [0]), ('median', (), (0, True,), 'scalar_keepdim_dim', [0]), ('mode', (S, S, S), NO_ARGS), ('mode', (S, S, S), (1,), 'dim', [0]), ('mode', (S, S, S), (1, True,), 'keepdim_dim', [0]), ('mode', (), NO_ARGS, 'scalar'), ('mode', (), (0,), 'scalar_dim', [0]), ('mode', (), (0, True,), 'scalar_keepdim_dim', [0]), ('sum', (S, S, S), NO_ARGS), ('sum', (S, S, S), (1,), 'dim', [0]), ('sum', (S, S, S), (1, True,), 'keepdim_dim', [0]), ('sum', (), NO_ARGS, 'scalar'), ('sum', (), (0,), 'scalar_dim', [0]), ('sum', (), (0, True,), 'scalar_keepdim_dim', [0]), ('sum', (S, S, S), ([1, 2],), 'multi_dim'), ('sum', (S, S, S), ([1, 2], True,), 'multi_dim_keepdim'), ('prod', (S, S, S), NO_ARGS), ('prod', (S, S, S), (1,), 'dim', [0]), ('prod', (S, S, S), (1, True,), 'keepdim_dim', [0]), ('prod', (), NO_ARGS, 'scalar'), ('prod', (), (0,), 'scalar_dim', [0]), ('prod', (), (0, True,), 'scalar_keepdim_dim', [0]), ('prod', prod_zeros(S, [0, 1]), NO_ARGS, 'zerodims2'), ('prod', prod_zeros(S, [0, 2]), NO_ARGS, 'zerodims1'), ('prod', prod_zeros(S, [1, 2]), NO_ARGS, 'zerodims0'), ('prod', prod_zeros(S, [0, 1]), (1,), 'zeros_dims2', [0]), ('prod', prod_zeros(S, [0, 2]), (1,), 'zeros_dims1', [0]), ('prod', prod_zeros(S, [1, 2]), (1,), 'zeros_dims0', [0]), ('prod', prod_zeros(S, [0, 1]), (1, True), 'keepdim_zeros_dims2', [0]), ('prod', prod_zeros(S, [0, 2]), (1, True), 'keepdim_zeros_dims1', [0]), ('prod', prod_zeros(S, [1, 2]), (1, True), 'keepdim_zeros_dims0', [0]), ('prod', prod_single_zero(S), NO_ARGS, 'single_zero'), ('prod', (torch.tensor(0., requires_grad=True)), NO_ARGS, 'scalar_zero'), ('prod', (torch.tensor(0., requires_grad=True)), (0,), 'scalar_dim_zero', [0]), ('prod', (torch.tensor(0., requires_grad=True)), (0, True,), 'scalar_keepdim_dim_zero', [0]), ('var', (S, S, S), NO_ARGS), ('var', (S, S, S), (1,), 'dim', [0]), ('var', (S, S, S), (1, True, True), 'keepdim_dim', [0]), ('var', (S,), (0,), 'dim_1d', [0]), ('var', (S,), (0, True, True), 'keepdim_dim_1d', [0]), ('std', (S, S, S), NO_ARGS), ('std', (S, S, S), (1,), 'dim', [0]), ('std', (S, S, S), (1, True, True), 'keepdim_dim', [0]), ('std', (S,), (0,), 'dim_1d', [0]), ('std', (S,), (0, True, True), 'keepdim_dim_1d', [0]), ('renorm', (S, S, S), (2, 1, 0.5), 'dim', [1]), ('renorm', (S, S, S), (1, 2, 3), 'norm_1'), ('renorm', (S, S, S), (inf, 2, 0.5), 'norm_inf'), ('repeat', (S,), (2,), 'single_number'), ('repeat', (), (2, 3), 'scalar'), ('repeat', (2, 2), (3, 2)), ('repeat', (2, 2), (1, 3, 1, 2), 'unsqueeze'), ('cumsum', (S, S, S), (0,), 'dim0', [0]), ('cumsum', (S, S, S), (1,), 'dim1', [0]), ('cumsum', (S, S, S), (1,), 'dim1_cast', [0], (), lambda x: x, {'dtype': torch.float64}), ('cumsum', (), (0,), 'dim0_scalar', [0]), ('cumprod', (S, S, S), (0,)), ('cumprod', (S, S, S), (1,), 'dim1', [0]), ('cumprod', (), (0,), 'scalar'), ('cumprod', (torch.tensor(0., requires_grad=True)), (0,), 'scalar_zeros'), ('cumprod', prod_zeros(S, [0, 1]), (1,), 'zeros_dim2', [0]), ('cumprod', prod_zeros(S, [0, 2]), (1,), 'zeros_dim1', [0]), ('cumprod', prod_zeros(S, [1, 2]), (1,), 'zeros_dim0', [0]), ('cumprod', prod_zeros(S, [1, 2]), (1,), 'zeros_dim0_cast', [0], (), lambda x: x, {'dtype': torch.float64}), ('unfold', (), (0, 1, 1), 'scalar', [0]), ('unfold', (S, S, S, S), (1, 3, 1), '', [0]), ('unfold', (S, S, S), (2, 3, 2), 'lastdim', [0]), ('addmm', (S, M), ((S, S), (S, M)),), ('addmm', (1,), ((S, S), (S, M)), 'broadcast_lhs'), ('addmm', (S, M), ((S, S), (S, M)), 'coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('addmm', (1,), ((S, S), (S, M)), 'broadcast_lhs_coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('addmm', (), ((S, S), (S, M)), 'scalar_broadcast_lhs'), ('addmm', (), ((S, S), (S, M)), 'scalar_broadcast_lhs_coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('addbmm', (S, M), ((S, S, S), (S, S, M)),), ('addbmm', (1,), ((S, S, S), (S, S, M)), 'broadcast_lhs'), ('addbmm', (S, M), ((S, S, S), (S, S, M)), 'coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('addbmm', (1,), ((S, S, S), (S, S, M)), 'broadcast_lhs_coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('addbmm', (), ((S, S, S), (S, S, M)), 'scalar_broadcast_lhs'), ('addbmm', (), ((S, S, S), (S, S, M)), 'scalar_broadcast_lhs_coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('baddbmm', (S, S, M), ((S, S, S), (S, S, M)),), ('baddbmm', (1,), ((S, S, S), (S, S, M)), 'broadcast_lhs'), ('baddbmm', (S, S, M), ((S, S, S), (S, S, M)), 'coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('baddbmm', (1,), ((S, S, S), (S, S, M)), 'broadcast_lhs_coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('baddbmm', (), ((S, S, S), (S, S, M)), 'scalar_broadcast_lhs'), ('baddbmm', (), ((S, S, S), (S, S, M)), 'scalar_broadcast_lhs_coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('addmv', (S,), ((S, M), (M,)),), ('addmv', (1,), ((S, M), (M,)), 'broadcast_lhs'), ('addmv', (S,), ((S, M), (M,)), 'coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('addmv', (1,), ((S, M), (M,)), 'broadcast_lhs_coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('addmv', (), ((S, M), (M,)), 'scalar_broadcast_lhs'), ('addmv', (), ((S, M), (M,)), 'scalar_broadcast_lhs_coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('addr', (S, M), ((S,), (M,)),), ('addr', (), ((S,), (M,)), 'broadcast_lhs'), ('addr', (S, M), ((S,), (M,)), 'coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('addr', (), ((S,), (M,)), 'broadcast_lhs_coef', (), (), lambda x: x, {'beta': 0.2, 'alpha': 0.6}), ('dot', (L,), ((L,),),), ('mm', (S, M), ((M, S),)), ('bmm', (M, S, M), ((M, M, S),)), ('mv', (S, M), ((M,),)), ('ger', (S,), ((M,),)), ('matmul', (L,), ((L,),),), ('matmul', (S, M), ((M,),), "2d_1d"), ('matmul', (M, ), ((M, S),), "1d_2d"), ('matmul', (S, M), ((M, S),), "2d_2d"), ('matmul', (S, S, M, M), ((S, S, M, S),), "4d_4d"), ('matmul', (S, S, M, M), ((M,),), "4d_1d"), ('matmul', (M,), ((S, S, M, S),), "1d_4d"), ('matrix_power', (S, S), [2], "n=2"), ('matrix_power', (S, S, S), [3], "n=3"), ('matrix_power', (S, S, S), [1], "n=1"), ('matrix_power', (S, S, S), [0], "n=0"), ('matrix_power', lambda: random_fullrank_matrix_distinct_singular_value(S), [-1], "n=-1", NO_ARGS, [skipIfNoLapack]), ('matrix_power', lambda: random_fullrank_matrix_distinct_singular_value(S), [-3], "n=-3", NO_ARGS, [skipIfNoLapack]), ('matrix_power', lambda: random_fullrank_matrix_distinct_singular_value(S, S), [-2], "n=-2", NO_ARGS, [skipIfNoLapack]), ('mvlgamma', torch.empty(S,).uniform_(0.5, 1), [1], "p=1"), ('mvlgamma', torch.empty(S,).uniform_(1, 2), [2], "p=2"), ('mvlgamma', torch.empty(S, S).uniform_(1.5, 3), [3], "p=3"), ('mvlgamma', torch.empty(S, S).uniform_(2.5, 5), [5], "p=5"), ('addcmul', (S, S), ((S, S), (S, S))), ('addcmul', (S, S), ((S, 1), (1, S)), 'broadcast_rhs'), ('addcmul', (1,), ((S, S, 1), (1, S)), 'broadcast_all'), ('addcmul', (S, S), ((S, S), (S, S)), 'scale', (), (), lambda x: x, {'value': 0.5}), ('addcmul', (S, S), ((S, 1), (1, S)), 'scale_broadcast_rhs', (), (), lambda x: x, {'value': 0.5}), ('addcmul', (1,), ((S, S, 1), (1, S)), 'scale_broadcast_all', (), (), lambda x: x, {'value': 0.5}), ('addcmul', (), ((), ()), 'scalar'), ('addcmul', (S, S), ((), ()), 'scalar_broadcast_rhs'), ('addcmul', (), ((S, S, 1), (1, S)), 'scalar_broadcast_lhs'), ('addcmul', (), ((), ()), 'scalar_scale', (), (), lambda x: x, {'value': 0.5}), ('addcmul', (S, S), ((), ()), 'scalar_scale_broadcast_rhs', (), (), lambda x: x, {'value': 0.5}), ('addcmul', (), ((S, S, 1), (1, S)), 'scalar_scale_broadcast_lhs', (), (), lambda x: x, {'value': 0.5}), ('addcdiv', (S, S), ((S, S), (S, S))), ('addcdiv', (S, S), ((S, 1), (1, S)), 'broadcast_rhs'), ('addcdiv', (1,), ((S, S, 1), (1, S)), 'broadcast_all'), ('addcdiv', (S, S), ((S, S), (S, S)), 'scale', (), (), lambda x: x, {'value': 0.5}), ('addcdiv', (S, S), ((S, 1), (1, S)), 'scale_broadcast_rhs', (), (), lambda x: x, {'value': 0.5}), ('addcdiv', (1,), ((S, S, 1), (1, S)), 'scale_broadcast_all', (), (), lambda x: x, {'value': 0.5}), ('addcdiv', (), ((), ()), 'scalar'), ('addcdiv', (S, S), ((), ()), 'scalar_broadcast_rhs'), ('addcdiv', (), ((S, S, 1), (1, S)), 'scalar_broadcast_lhs'), ('addcdiv', (), ((), ()), 'scalar_scale', (), (), lambda x: x, {'value': 0.5}), ('addcdiv', (S, S), ((), ()), 'scalar_scale_broadcast_rhs', (), (), lambda x: x, {'value': 0.5}), ('addcdiv', (), ((S, S, 1), (1, S)), 'scalar_scale_broadcast_lhs', (), (), lambda x: x, {'value': 0.5}), ('zero_', (S, S, S), NO_ARGS), ('zero_', (), NO_ARGS, 'scalar'), ('logsumexp', (S, S), (1,)), ('logsumexp', (), (0,), 'scalar'), ('norm', (S, S), (), 'default'), ('norm', (S, S), (2,), '2'), ('norm', (S, S), (0,), '0'), ('norm', (S, S), (0.5,), '0_5'), ('norm', (S, S), (1,), '1'), ('norm', (S, S), (3,), '3'), ('norm', (S, S), (inf,), 'inf'), ('norm', (S, S), (-inf,), '-inf'), ('norm', (S, S), ('fro',), 'fro_default'), ('norm', (S, S), ('fro', [0, 1],), 'fro'), ('norm', (S, S), ('nuc',), 'nuc', NO_ARGS, [skipIfNoLapack]), ('norm', (S, S), (-1,), 'neg_1'), ('norm', (S, S), (-2,), 'neg_2'), ('norm', (S, S), (-0.5,), 'neg_0_5'), ('norm', (S, S), (-1.5,), 'neg_1_5'), ('norm', (S, S), (-2, 1,), 'neg_2_2_dim', [1]), ('norm', (S, S), (-1, 1,), 'neg_1_2_dim', [1]), ('norm', (S, S), (0, 1,), '0_2_dim', [1]), ('norm', (S, S), (1, 1,), '1_2_dim', [1]), ('norm', (S, S), (2, 1,), '2_2_dim', [1]), ('norm', (S, S), (3, 1,), '3_2_dim', [1]), ('norm', (S, S), (inf, 1,), 'inf_2_dim'), ('norm', torch.rand(S, S, S) + 5e-2, (1.5,), '1_5_default'), ('norm', (S, S, S), (2, 1), '2_dim', [1]), ('norm', (S, S, S), (3, 1), '3_dim', [1]), ('norm', torch.rand(S, S, S) + 5e-2, (1.5, 1), '1_5_dim', [1]), ('norm', (S, S, S), (2, 1, True), 'keepdim_2_dim', [1]), ('norm', (S, S, S), (3, 1, True), 'keepdim_3_dim', [1]), ('norm', torch.rand(S, S, S) + 5e-2, (1.5, 1, True), 'keepdim_1_5_dim', [1]), ('norm', (), (2, 0), '2_dim_scalar', [1]), ('norm', (), (3, 0), '3_dim_scalar', [1]), ('norm', (), (2, 0, True), 'keepdim_2_dim_scalar', [1]), ('norm', (), (3, 0, True), 'keepdim_3_dim_scalar', [1]), ('clone', (S, M, S), NO_ARGS), ('clone', (), NO_ARGS, 'scalar'), ('dist', (S, S, S), ((S, S, S),)), ('dist', (S, S, S), ((S,),), 'broadcast_rhs'), ('dist', (S,), ((S, S, S),), 'broadcast_lhs'), ('dist', (S, 1, S), ((S, S),), 'broadcast_all'), ('dist', (), ((),), 'scalar'), ('dist', (S, S, S), ((),), 'scalar_broadcast_rhs'), ('dist', (), ((S, S, S),), 'scalar_broadcast_lhs'), ('dist', (S, S, S), ((S, S, S), 4), '4'), ('dist', (S, S, S), ((S,), 4), '4_broadcast_rhs'), ('dist', (S,), ((S, S, S), 4), '4_broadcast_lhs'), ('dist', (S, 1, S), ((S, S), 4), '4_broadcast_all'), ('dist', (), ((), 4), 'scalar_4'), ('dist', (S, S, S), ((), 4), 'scalar_4_broadcast_rhs'), ('dist', (), ((S, S, S), 4), 'scalar_4_broadcast_lhs'), ('diag', (M, M), NO_ARGS, '2d'), ('diag', (3, 5), NO_ARGS, '2d_wide'), ('diag', (3, 5), (2,), '2d_wide_pos'), ('diag', (3, 5), (-2,), '2d_wide_neg'), ('diag', (5, 3), NO_ARGS, '2d_tall'), ('diag', (5, 3), (2,), '2d_tall_pos'), ('diag', (5, 3), (-2,), '2d_tall_neg'), ('diag', (M,), NO_ARGS, '1d'), ('diag', (M, M), (1,), '2d_1'), ('diag', (M, M), (2,), '2d_2'), ('diag_embed', (S, S), NO_ARGS), ('diagonal', (M, M), NO_ARGS, '2d'), ('diagonal', (3, 5), NO_ARGS, '2d_wide'), ('diagonal', (3, 5), (2,), '2d_wide_pos'), ('diagonal', (3, 5), (-2,), '2d_wide_neg'), ('diagonal', (5, 3), NO_ARGS, '2d_tall'), ('diagonal', (5, 3), (2,), '2d_tall_pos'), ('diagonal', (5, 3), (-2,), '2d_tall_neg'), ('diagonal', (M, M), (1,), '2d_1'), ('diagonal', (M, M), (2,), '2d_2'), ('diagonal', (M, M, M), (1, 1, 2), '3d_1'), ('diagonal', (M, M, M), (2, 0, 1), '3d_2'), ('diagonal', (M, M, M), (-2, 0, 1), '3d_3'), ('tril', (M, M), NO_ARGS), ('tril', (M, M), (2,), 'idx'), ('triu', (M, M), NO_ARGS), ('triu', (M, M), (2,), 'idx'), ('trace', (M, M), NO_ARGS), ('cross', (S, 3), ((S, 3),)), ('cross', (S, 3, S), ((S, 3, S), 1), 'dim'), ('index_select', (S, S, S), (0, index_variable(2, S)), 'dim', [0]), ('index_select', (), (0, torch.tensor([0], dtype=torch.int64)), 'scalar_mixed_dim', [0]), ('index_select', (), (0, torch.tensor(0, dtype=torch.int64)), 'scalar_dim', [0]), ('index_add', (S, S), (0, index_variable(2, S), (2, S)), 'dim', [0]), ('index_add', (), (0, torch.tensor([0], dtype=torch.int64), torch.tensor([2.])), 'scalar_input_dim', [0]), ('index_add', (), (0, torch.tensor(0, dtype=torch.int64), torch.tensor(2.)), 'scalar_all_dim', [0]), ('index_copy', (S, S), (0, index_perm_variable(2, S), (2, S)), 'dim', [0]), ('index_copy', (), (0, torch.tensor([0], dtype=torch.int64), torch.tensor([2.])), 'scalar_input_dim', [0]), ('index_copy', (), (0, torch.tensor(0, dtype=torch.int64), torch.tensor(2.)), 'scalar_all_dim', [0]), ('index_fill', (S, S), (0, index_variable(2, S), 2), 'dim', [0]), # FIXME: we should compute the derivative w.r.t torch.tensor(2) ('index_fill', (S, S), (0, index_variable(2, S), non_differentiable(torch.tensor(2))), 'variable_dim', [0]), ('index_fill', (S, S), (0, torch.tensor(0, dtype=torch.int64), 2), 'scalar_index_dim', [0]), ('index_fill', (), (0, torch.tensor([0], dtype=torch.int64), 2), 'scalar_input_dim', [0]), ('index_fill', (), (0, torch.tensor(0, dtype=torch.int64), 2), 'scalar_both_dim', [0]), ('inverse', lambda: random_fullrank_matrix_distinct_singular_value(S), NO_ARGS, '', NO_ARGS, [skipIfNoLapack]), ('inverse', lambda: random_fullrank_matrix_distinct_singular_value(S, 2, 3), NO_ARGS, 'batched', NO_ARGS, [skipIfNoLapack]), ('det', (S, S), NO_ARGS, '', NO_ARGS, [skipIfNoLapack]), ('det', (1, 1), NO_ARGS, '1x1', NO_ARGS, [skipIfNoLapack]), ('det', lambda: random_symmetric_matrix(S), NO_ARGS, 'symmetric', NO_ARGS, [skipIfNoLapack]), ('det', lambda: random_symmetric_psd_matrix(S), NO_ARGS, 'symmetric_psd', NO_ARGS, [skipIfNoLapack]), ('det', lambda: random_symmetric_pd_matrix(S), NO_ARGS, 'symmetric_pd', NO_ARGS, [skipIfNoLapack]), ('det', lambda: random_square_matrix_of_rank(S, S - 2), NO_ARGS, 'dim2_null', NO_ARGS, [skipIfNoLapack]), ('det', lambda: random_square_matrix_of_rank(S, 1), NO_ARGS, 'rank1', NO_ARGS, [skipIfNoLapack]), ('det', lambda: random_square_matrix_of_rank(S, 2), NO_ARGS, 'rank2', NO_ARGS, [skipIfNoLapack]), ('det', lambda: random_fullrank_matrix_distinct_singular_value(S), NO_ARGS, 'distinct_singular_values', NO_ARGS, [skipIfNoLapack]), # For `logdet` and `slogdet`, the function at det=0 is not smooth. # We need to exclude tests with det=0 (e.g. dim2_null, rank1, rank2) and use # `make_nonzero_det` to make the random matrices have nonzero det. For # `logdet`, we also set `make_nonzero_det(matrix, sign=1)` to make the # matrix have positive det. ('logdet', lambda: make_nonzero_det(torch.randn(S, S), 1), NO_ARGS, '', NO_ARGS, [skipIfNoLapack]), ('logdet', lambda: make_nonzero_det(torch.randn(1, 1), 1), NO_ARGS, '1x1', NO_ARGS, [skipIfNoLapack]), ('logdet', lambda: make_nonzero_det(random_symmetric_matrix(S), 1), NO_ARGS, 'symmetric', NO_ARGS, [skipIfNoLapack]), ('logdet', lambda: make_nonzero_det(random_symmetric_pd_matrix(S), 1), NO_ARGS, 'symmetric_pd', NO_ARGS, [skipIfNoLapack]), ('logdet', lambda: make_nonzero_det(random_fullrank_matrix_distinct_singular_value(S), 1, 0), NO_ARGS, 'distinct_singular_values', NO_ARGS, [skipIfNoLapack]), ('slogdet', lambda: make_nonzero_det(torch.randn(1, 1), 1), NO_ARGS, '1x1_pos_det', NO_ARGS, [skipIfNoLapack], itemgetter(1)), ('slogdet', lambda: make_nonzero_det(torch.randn(1, 1), -1), NO_ARGS, '1x1_neg_det', NO_ARGS, [skipIfNoLapack], itemgetter(1)), ('slogdet', lambda: make_nonzero_det(torch.randn(S, S), 1), NO_ARGS, 'pos_det', NO_ARGS, [skipIfNoLapack], itemgetter(1)), ('slogdet', lambda: make_nonzero_det(torch.randn(S, S), -1), NO_ARGS, 'neg_det', NO_ARGS, [skipIfNoLapack], itemgetter(1)), ('slogdet', lambda: make_nonzero_det(random_symmetric_matrix(S)), NO_ARGS, 'symmetric', NO_ARGS, [skipIfNoLapack], itemgetter(1)), ('slogdet', lambda: random_symmetric_pd_matrix(S), NO_ARGS, 'symmetric_pd', NO_ARGS, [skipIfNoLapack], itemgetter(1)), ('slogdet', lambda: random_fullrank_matrix_distinct_singular_value(S), NO_ARGS, 'distinct_singular_values', NO_ARGS, [skipIfNoLapack], itemgetter(1)), ('symeig', lambda: random_symmetric_matrix(S), (True, False), 'lower', NO_ARGS, [skipIfNoLapack]), ('symeig', lambda: random_symmetric_matrix(S), (True, True), 'upper', NO_ARGS, [skipIfNoLapack]), ('symeig', lambda: random_symmetric_matrix(M), (True, True), 'large', NO_ARGS, [skipIfNoLapack]), ('svd', lambda: random_fullrank_matrix_distinct_singular_value(S), NO_ARGS, '', NO_ARGS, [skipIfNoLapack]), ('svd', lambda: random_fullrank_matrix_distinct_singular_value(S)[:(S - 2)], NO_ARGS, 'wide', NO_ARGS, [skipIfNoLapack]), ('svd', lambda: random_fullrank_matrix_distinct_singular_value(S)[:, :(S - 2)], NO_ARGS, 'tall', NO_ARGS, [skipIfNoLapack]), ('svd', lambda: random_fullrank_matrix_distinct_singular_value(S)[:(S - 2)], (False,), 'wide_all', NO_ARGS, [skipIfNoLapack], lambda usv: (usv[0], usv[1], usv[2][:, :(S - 2)])), ('svd', lambda: random_fullrank_matrix_distinct_singular_value(S)[:, :(S - 2)], (False,), 'tall_all', NO_ARGS, [skipIfNoLapack], lambda usv: (usv[0][:, :(S - 2)], usv[1], usv[2])), ('svd', lambda: random_fullrank_matrix_distinct_singular_value(M), NO_ARGS, 'large', NO_ARGS, [skipIfNoLapack]), ('gesv', (S, S), (random_fullrank_matrix_distinct_singular_value( S, silent=True),), '', NO_ARGS, [skipIfNoLapack]), ('gesv', (S, S, S), (random_fullrank_matrix_distinct_singular_value(S, S, silent=True),), 'batched', NO_ARGS, [skipIfNoLapack]), ('gesv', (2, 3, S, S), (random_fullrank_matrix_distinct_singular_value(S, 2, 3, silent=True),), 'batched_dims', NO_ARGS, [skipIfNoLapack]), ('gesv', (2, 2, S, S), (random_fullrank_matrix_distinct_singular_value(S, 1, silent=True),), 'batched_broadcast_A', NO_ARGS, [skipIfNoLapack]), ('gesv', (1, S, S), (random_fullrank_matrix_distinct_singular_value(S, 2, 2, silent=True),), 'batched_broadcast_b', NO_ARGS, [skipIfNoLapack]), ('fill_', (S, S, S), (1,), 'number'), ('fill_', (), (1,), 'number_scalar'), # FIXME: we should compute the derivative w.r.t torch.tensor(1) ('fill_', (S, S, S), (non_differentiable(torch.tensor(1)),), 'variable'), ('eq_', (S, S, S), ((S, S, S),)), ('eq_', (S, S, S), ((1,),), 'broadcast_rhs'), ('eq_', (), ((),), 'scalar'), ('eq_', (S, S, S), ((),), 'scalar_broadcast_rhs'), ('ne_', (S, S, S), ((S, S, S),)), ('ne_', (S, S, S), ((1,),), 'broadcast_rhs'), ('ne_', (), ((),), 'scalar'), ('ne_', (S, S, S), ((),), 'scalar_broadcast_rhs'), ('gt_', (S, S, S), ((S, S, S),)), ('gt_', (S, S, S), ((1,),), 'broadcast_rhs'), ('gt_', (), ((),), 'scalar'), ('gt_', (S, S, S), ((),), 'scalar_broadcast_rhs'), ('ge_', (S, S, S), ((S, S, S),)), ('ge_', (S, S, S), ((1,),), 'broadcast_rhs'), ('ge_', (), ((),), 'scalar'), ('ge_', (S, S, S), ((),), 'scalar_broadcast_rhs'), ('lt_', (S, S, S), ((S, S, S),)), ('lt_', (S, S, S), ((1,),), 'broadcast_rhs'), ('lt_', (), ((),), 'scalar'), ('lt_', (S, S, S), ((),), 'scalar_broadcast_rhs'), ('le_', (S, S, S), ((S, S, S),)), ('le_', (S, S, S), ((1,),), 'broadcast_rhs'), ('le_', (), ((),), 'scalar'), ('le_', (S, S, S), ((),), 'scalar_broadcast_rhs'), ('eq_', (S, S, S), (0,), 'pyscalar'), ('ne_', (S, S, S), (0,), 'pyscalar'), ('gt_', (S, S, S), (0,), 'pyscalar'), ('ge_', (S, S, S), (0,), 'pyscalar'), ('le_', (S, S, S), (0,), 'pyscalar'), ('lt_', (), (0,), 'pyscalar'), ('eq_', (), (0,), 'pyscalar_scalar'), ('ne_', (), (0,), 'pyscalar_scalar'), ('gt_', (), (0,), 'pyscalar_scalar'), ('ge_', (), (0,), 'pyscalar_scalar'), ('lt_', (), (0,), 'pyscalar_scalar'), ('le_', (), (0,), 'pyscalar_scalar'), ('permute', (1, 2, 3, 4), (0, 2, 3, 1)), ('permute', (1, 2, 3, 4), (0, -2, -1, 1), 'neg_dim'), ('permute', (), (dont_convert(()),), 'scalar'), ('select', (S, S, S), (1, 2), 'dim', [0]), ('select', (S, S, S), (1, -1), 'wrap_dim', [0]), ('select', (S,), (0, 2), '1d'), ('narrow', (S, S, S), (1, 2, 2), 'dim', [0]), ('narrow', (S, S, S), (1, 0, 0), 'empty_dim', [0]), ('squeeze', (S, 1, S, 1), NO_ARGS), ('squeeze', (1, 1, 1, 1), NO_ARGS, 'input_sizes_are_ones'), ('squeeze', (S, 1, S, 1), (1,), '1_dim', [0]), ('squeeze', (S, 1, S, 1), (2,), 'not_1_dim', [0]), ('squeeze', (), (0,), 'scalar', [0]), ('unsqueeze', (S, S, S), (0,), 'first', [0]), ('unsqueeze', (S, S, S), (1,), 'middle', [0]), ('unsqueeze', (S, S, S), (3,), 'last', [0]), ('unsqueeze', (), (0,), 'scalar', [0]), ('chunk', (S, S, S), (2,)), ('chunk', (S, S, S), (S, 1), 'dim', [1]), ('split', (S, S, S), (2,)), ('split', (S, S, S), (S, 1), 'dim', [1]), ('split', (S, S, S), ([int(S / 3), S - int(S / 3) * 2, int(S / 3)],), 'size_list'), ('split', (S, S, S), ([int(S / 2), S - int(S / 2) * 2, int(S / 2)], 2), 'size_list_dim', [1]), ('gather', (M, S), (0, gather_variable((S, S), 1, M, True)), 'dim0', [0]), ('gather', (M, S), (1, gather_variable((M, S // 2), 0, S, True)), 'dim1', [0]), ('gather', (), (0, torch.tensor([0], dtype=torch.int64)), 'scalar_input', [0]), ('gather', (S,), (0, torch.tensor(0, dtype=torch.int64)), 'scalar_index', [0]), ('gather', (), (0, torch.tensor(0, dtype=torch.int64)), 'scalar_both', [0]), ('scatter', (M, S), (0, gather_variable((S, S), 1, M), (S, S)), 'dim0', [0]), ('scatter', (M, S), (1, gather_variable((M, S // 2), 0, S), (M, S // 2)), 'dim1', [0]), ('scatter', (), (0, torch.tensor(0, dtype=torch.int64), ()), 'scalar_all_dim0', [0]), ('scatter_add', (M, S), (0, gather_variable((S, S), 1, M), (S, S)), 'dim0', [0]), ('scatter_add', (M, S), (1, gather_variable((M, S // 2), 0, S), (M, S // 2)), 'dim1', [0]), ('scatter_add', (), (0, torch.tensor(0, dtype=torch.int64), ()), 'scalar_all_dim0', [0]), ('masked_select', (M, M), (mask_not_all_zeros((M, M)),)), ('masked_select', (M, M), (mask_not_all_zeros((M,)),), 'broadcast_rhs'), ('masked_select', (M,), (mask_not_all_zeros((M, M)),), 'broadcast_lhs'), ('masked_select', (M, 1, M), (mask_not_all_zeros((M, M)),), 'broadcast_all'), ('masked_select', (), (torch.tensor(1, dtype=torch.uint8),), 'scalar'), ('masked_select', (M, M), (torch.tensor(1, dtype=torch.uint8),), 'scalar_broadcast_rhs'), ('masked_select', (), (mask_not_all_zeros((M, M)),), 'scalar_broadcast_lhs'), ('masked_fill', (M, M), (torch.ByteTensor(M, M).bernoulli_(), 10)), ('masked_fill', (M, M), (torch.ByteTensor(M, M).bernoulli_(), torch.tensor(10)), 'tensor'), # no lhs or all broadcast on masked_fill or masked_scatter because it's always inplace ('masked_fill', (M, M), (torch.ByteTensor(M,).bernoulli_(), 10), 'broadcast_rhs'), ('masked_fill', (), (torch.tensor(0, dtype=torch.uint8, requires_grad=False).bernoulli_(), 10), 'scalar'), ('masked_fill', (), (torch.tensor(0, dtype=torch.uint8, requires_grad=False).bernoulli_(), torch.tensor(10)), 'scalar_variable'), ('masked_fill', (M, M), (torch.tensor(0, dtype=torch.uint8, requires_grad=False).bernoulli_(), 10), 'scalar_broadcast_rhs'), ('masked_scatter', (M, M), (torch.ByteTensor(M, M).bernoulli_(), (M, M))), ('masked_scatter', (M, M), (torch.ByteTensor(M,).bernoulli_(), (M, M)), 'broadcast_rhs'), ('masked_scatter', (M, M), (bernoulli_scalar(), (M, M)), 'scalar'), ('masked_scatter', (M, M), (bernoulli_scalar(), (M, M)), 'scalar_broadcast_rhs'), ('resize_', (S, S, S), (torch.Size([S * S, S])), 'fewer_dims'), ('resize_', (), (dont_convert(()),), 'scalar'), ('resize_', (), (torch.Size([1, 1, 1])), 'scalar_to_dims'), ('resize_as_', (), (non_differentiable(torch.tensor(5.)),), 'scalar'), ('resize_as_', (), (non_differentiable(torch.randn((1, 1, 1))),), 'scalar_to_dims'), ('resize_as_', (S, S, S), (non_differentiable(torch.randn(S * S, S)),)), ('sort', (S, M, S), NO_ARGS), ('sort', (S, M, S), (1,), 'dim'), ('sort', (S, M, S), (1, True), 'dim_desc'), ('sort', (), NO_ARGS, 'scalar'), ('sort', (), (0,), 'dim_scalar'), ('sort', (), (0, True), 'dim_desc_scalar'), ('topk', (S, M, S), (3,)), ('topk', (S, M, S), (3, 1), 'dim', [1]), ('topk', (S, M, S), (3, 1, True), 'dim_desc', [1]), ('topk', (S, M, S), (3, 1, True, True), 'dim_desc_sort', [1]), ('topk', (), (1,), 'scalar'), ('topk', (), (1, 0), 'dim_scalar', [1]), ('topk', (), (1, 0, True), 'dim_desc_scalar', [1]), ('topk', (), (1, 0, True, True), 'dim_desc_sort_scalar', [1]), ('take', (S, S, S), (torch.LongTensor([[-3, 2], [20, 2]]),)), ('take', (S, S, S), (torch.tensor(0, dtype=torch.int64),), 'scalar_index'), ('take', (), (torch.LongTensor([0]),), 'scalar_data'), ('take', (), (torch.tensor(0, dtype=torch.int64),), 'scalar_both'), ('where', (M, M), (mask_not_all_zeros((M, M)), (M, M))), ('where', (M, 1, M), (mask_not_all_zeros((M, M)), (M, M, 1)), 'broadcast_all'), ('where', (), (bernoulli_scalar(), ()), 'scalar'), ('where', (M, 1, M), (bernoulli_scalar(), (M, M, 1)), 'scalar_broadcast_mask'), ('where', (), (mask_not_all_zeros((M, M)), ()), 'scalar_broadcast_non_mask'), ('__getitem__', torch.randn(S, S, S), (dont_convert([1, 2]),)), ('__getitem__', torch.randn(S, S, S), (slice(0, 3),), 'slice'), ('__getitem__', torch.randn(S, S, S), (dont_convert([slice(0, 3), 1]),), 'slice_index'), ('__getitem__', torch.randn(S, S, S), (dont_convert([[0, 2, 3], [1, 3, 3], [0, 0, 2]]),), 'adv_index'), ('__getitem__', torch.randn(S, S, S), (dont_convert([[0, 0, 3], [1, 1, 3], [0, 0, 2]]),), 'adv_index_dup'), ('__getitem__', torch.randn(S, S, S), (dont_convert([slice(None), slice(None), [0, 3]]),), 'adv_index_end'), ('__getitem__', torch.randn(S, S, S), (dont_convert([slice(None), [0, 3], slice(None)]),), 'adv_index_mid'), ('__getitem__', torch.randn(S, S, S), (dont_convert([[0, 3], slice(None), slice(None)]),), 'adv_index_beg'), ('__getitem__', torch.randn(S, S, S), (dont_convert([[0, 3], [1, 2], slice(None)]),), 'adv_index_comb'), ('__getitem__', torch.randn(S, S, S), (dont_convert([[0, 3], ]),), 'adv_index_sub'), ('__getitem__', torch.randn(S, S, S), (dont_convert([[0, 3], slice(None)]),), 'adv_index_sub_2'), ('__getitem__', torch.randn(S, S, S), (dont_convert([[0, 3], Ellipsis]),), 'adv_index_sub_3'), ('__getitem__', torch.randn(S, S, S), (dont_convert([[0, 2, 3], [1, 3, 3], torch.LongTensor([0, 0, 2])]),), 'adv_index_var'), ]
def test_autocast(self): set_rng_seed(0) for dtype in (torch.float, torch.half): with torch.cuda.amp.autocast(): self._test_forward(torch.device("cuda"), False, dtype=dtype)
def test_detection_model(model_name, dev): set_rng_seed(0) defaults = { 'num_classes': 50, 'pretrained_backbone': False, 'input_shape': (3, 300, 300), } kwargs = {**defaults, **_model_params.get(model_name, {})} input_shape = kwargs.pop('input_shape') model = models.detection.__dict__[model_name](**kwargs) model.eval().to(device=dev) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) model_input = [x] out = model(model_input) assert model_input[0] is x def check_out(out): assert len(out) == 1 def compact(tensor): size = tensor.size() elements_per_sample = functools.reduce(operator.mul, size[1:], 1) if elements_per_sample > 30: return compute_mean_std(tensor) else: return subsample_tensor(tensor) def subsample_tensor(tensor): num_elems = tensor.size(0) num_samples = 20 if num_elems <= num_samples: return tensor ith_index = num_elems // num_samples return tensor[ith_index - 1::ith_index] def compute_mean_std(tensor): # can't compute mean of integral tensor tensor = tensor.to(torch.double) mean = torch.mean(tensor) std = torch.std(tensor) return {"mean": mean, "std": std} output = map_nested_tensor_object(out, tensor_map_fn=compact) prec = 0.01 try: # We first try to assert the entire output if possible. This is not # only the best way to assert results but also handles the cases # where we need to create a new expected result. _assert_expected(output, model_name, prec=prec) except AssertionError: # Unfortunately detection models are flaky due to the unstable sort # in NMS. If matching across all outputs fails, use the same approach # as in NMSTester.test_nms_cuda to see if this is caused by duplicate # scores. expected_file = _get_expected_file(model_name) expected = torch.load(expected_file) torch.testing.assert_close(output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False) # Note: Fmassa proposed turning off NMS by adapting the threshold # and then using the Hungarian algorithm as in DETR to find the # best match between output and expected boxes and eliminate some # of the flakiness. Worth exploring. return False # Partial validation performed return True # Full validation performed full_validation = check_out(out) _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None)) if dev == torch.device("cuda"): with torch.cuda.amp.autocast(): out = model(model_input) # See autocast_flaky_numerics comment at top of file. if model_name not in autocast_flaky_numerics: full_validation &= check_out(out) if not full_validation: msg = "The output of {} could only be partially validated. " \ "This is likely due to unit-test flakiness, but you may " \ "want to do additional manual checks if you made " \ "significant changes to the codebase.".format(test_detection_model.__name__) warnings.warn(msg, RuntimeWarning) pytest.skip(msg)
def _test_detection_model(self, name, dev): set_rng_seed(0) kwargs = {} if "retinanet" in name: # Reduce the default threshold to ensure the returned boxes are not empty. kwargs["score_thresh"] = 0.01 elif "fasterrcnn_mobilenet_v3_large" in name: kwargs["box_score_thresh"] = 0.02076 if "fasterrcnn_mobilenet_v3_large_320_fpn" in name: kwargs["rpn_pre_nms_top_n_test"] = 1000 kwargs["rpn_post_nms_top_n_test"] = 1000 model = models.detection.__dict__[name](num_classes=50, pretrained_backbone=False, **kwargs) model.eval().to(device=dev) input_shape = (3, 300, 300) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) model_input = [x] out = model(model_input) self.assertIs(model_input[0], x) def check_out(out): self.assertEqual(len(out), 1) def compact(tensor): size = tensor.size() elements_per_sample = functools.reduce(operator.mul, size[1:], 1) if elements_per_sample > 30: return compute_mean_std(tensor) else: return subsample_tensor(tensor) def subsample_tensor(tensor): num_elems = tensor.size(0) num_samples = 20 if num_elems <= num_samples: return tensor ith_index = num_elems // num_samples return tensor[ith_index - 1::ith_index] def compute_mean_std(tensor): # can't compute mean of integral tensor tensor = tensor.to(torch.double) mean = torch.mean(tensor) std = torch.std(tensor) return {"mean": mean, "std": std} output = map_nested_tensor_object(out, tensor_map_fn=compact) prec = 0.01 try: # We first try to assert the entire output if possible. This is not # only the best way to assert results but also handles the cases # where we need to create a new expected result. self.assertExpected(output, name, prec=prec) raise AssertionError except AssertionError: # Unfortunately detection models are flaky due to the unstable sort # in NMS. If matching across all outputs fails, use the same approach # as in NMSTester.test_nms_cuda to see if this is caused by duplicate # scores. expected_file = self._get_expected_file(name) expected = torch.load(expected_file) self.assertEqual(output[0]["scores"], expected[0]["scores"], prec=prec) # Note: Fmassa proposed turning off NMS by adapting the threshold # and then using the Hungarian algorithm as in DETR to find the # best match between output and expected boxes and eliminate some # of the flakiness. Worth exploring. return False # Partial validation performed return True # Full validation performed full_validation = check_out(out) self.check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(name, None)) if dev == torch.device("cuda"): with torch.cuda.amp.autocast(): out = model(model_input) # See autocast_flaky_numerics comment at top of file. if name not in autocast_flaky_numerics: full_validation &= check_out(out) if not full_validation: msg = "The output of {} could only be partially validated. " \ "This is likely due to unit-test flakiness, but you may " \ "want to do additional manual checks if you made " \ "significant changes to the codebase.".format(self._testMethodName) warnings.warn(msg, RuntimeWarning) raise unittest.SkipTest(msg)