def calc_roi_mean_allsubgroup(src_file, roi_files, group_labels, trg_file):
    """
    Calculate ROI means for each subject of each subgroup in corresponding hemisphere.
    For example, subgourp1's right ROI1 will be used to calculate ROI means not only for subgroup1's subjects,
    but also for other subgroups' subjects.
    """
    reader = CiftiReader(src_file)
    labels = np.unique(group_labels)
    roi_mean_rows = []
    for hemi in hemis:
        maps = reader.get_data(brain_structure[hemi], True)
        for label1 in labels:
            sub_maps = np.atleast_2d(maps[group_labels == label1])
            for label2 in labels:
                roi_file = roi_files.format(hemi=hemi[0], label=label2)
                roi_mask = nib.load(roi_file).get_data().ravel()
                roi_labels = np.unique(roi_mask)
                for roi_label in roi_labels:
                    if roi_label == 0:
                        continue
                    roi_vertices = np.where(roi_mask == roi_label)[0]
                    roi_name = roi_names.format(hemi=hemi[0], label=label2, roi_label=int(roi_label))
                    roi_name += '_in_subgroup{}'.format(label1)
                    roi_means = np.mean(sub_maps[:, roi_vertices], 1)
                    roi_mean_row = [roi_name]
                    roi_mean_row.extend([str(_) for _ in roi_means])
                    roi_mean_rows.append(','.join(roi_mean_row))
    open(trg_file, 'w+').writelines('\n'.join(roi_mean_rows))
def gender_diff_roi_mean_allsubgroup(data_file, gender_file, roi_files, group_labels, trg_file):

    cifti_reader = CiftiReader(data_file)
    gender_labels = np.array(open(gender_file).read().split(' '))
    group_labels_uniq = np.unique(group_labels)
    rows = []
    for hemi in hemis:
        data = cifti_reader.get_data(brain_structure[hemi], True)
        for group_label1 in group_labels_uniq:
            sub_data_m = np.atleast_2d(data[np.logical_and(gender_labels == 'M', group_labels == group_label1)])
            sub_data_f = np.atleast_2d(data[np.logical_and(gender_labels == 'F', group_labels == group_label1)])
            for group_label2 in group_labels_uniq:
                roi_file = roi_files.format(hemi=hemi[0], label=group_label2)
                roi_mask = nib.load(roi_file).get_data().ravel()
                roi_labels = np.unique(roi_mask)
                for roi_label in roi_labels:
                    if roi_label == 0:
                        continue
                    roi_vertices = np.where(roi_mask == roi_label)[0]
                    roi_means_m = np.mean(sub_data_m[:, roi_vertices], 1)
                    roi_means_f = np.mean(sub_data_f[:, roi_vertices], 1)
                    roi_name = roi_names.format(hemi=hemi[0], label=group_label2, roi_label=int(roi_label))
                    item_name_m = roi_name + '_in_group{}_male'.format(group_label1)
                    item_name_f = roi_name + '_in_group{}_female'.format(group_label1)
                    row_m = [item_name_m]
                    row_f = [item_name_f]
                    row_m.extend([str(_) for _ in roi_means_m])
                    row_f.extend([str(_) for _ in roi_means_f])
                    rows.append(','.join(row_m))
                    rows.append(','.join(row_f))
    open(trg_file, 'w+').writelines('\n'.join(rows))
Exemple #3
0
def calc_meas_individual(hemi='lh'):
    import nibabel as nib
    import numpy as np
    import pickle as pkl
    from commontool.io.io import CiftiReader
    from cxy_hcp_ffa.lib.predefine import hemi2stru, roi2label

    # inputs
    work_dir = pjoin(proj_dir,
                     'analysis/s2/1080_fROI/refined_with_Kevin/tfMRI')
    rois_file = pjoin(proj_dir, 'analysis/s2/1080_fROI/'
                      f'refined_with_Kevin/rois_v3_{hemi}.nii.gz')
    meas_file = pjoin(proj_dir, 'analysis/s2/activation.dscalar.nii')

    # outputs
    out_file = pjoin(work_dir, f'individual_activ_{hemi}.pkl')

    rois = nib.load(rois_file).get_data().squeeze().T
    n_roi = len(roi2label)
    meas_reader = CiftiReader(meas_file)
    meas = meas_reader.get_data(hemi2stru[hemi], True)
    n_subj = meas.shape[0]

    roi_meas = {'shape': 'n_roi x n_subj', 'roi': list(roi2label.keys()),
                'meas': np.ones((n_roi, n_subj)) * np.nan}
    for roi_idx, roi in enumerate(roi_meas['roi']):
        lbl_idx_arr = rois == roi2label[roi]
        for subj_idx in range(n_subj):
            lbl_idx_vec = lbl_idx_arr[subj_idx]
            if np.any(lbl_idx_vec):
                roi_meas['meas'][roi_idx, subj_idx] = np.mean(
                    meas[subj_idx][lbl_idx_vec])
    pkl.dump(roi_meas, open(out_file, 'wb'))
def calc_roi_mean_intrasubgroup(src_file, roi_files, group_labels, trg_file):
    """
    Calculate ROI means for each subject in corresponding subgroup.
    """
    reader = CiftiReader(src_file)
    labels = np.unique(group_labels)
    roi_mean_rows = []
    for hemi in hemis:
        maps = reader.get_data(brain_structure[hemi], True)
        for label in labels:
            sub_maps = np.atleast_2d(maps[group_labels == label])
            roi_file = roi_files.format(hemi=hemi[0], label=label)
            roi_mask = nib.load(roi_file).get_data().ravel()
            roi_labels = np.unique(roi_mask)
            for roi_label in roi_labels:
                if roi_label == 0:
                    continue
                roi_vertices = np.where(roi_mask == roi_label)[0]
                roi_name = roi_names.format(hemi=hemi[0], label=label, roi_label=int(roi_label))
                roi_means = np.mean(sub_maps[:, roi_vertices], 1)

                roi_mean_row = [roi_name]
                roi_mean_row.extend([str(_) for _ in roi_means])
                roi_mean_rows.append(','.join(roi_mean_row))
    open(trg_file, 'w+').writelines('\n'.join(roi_mean_rows))
Exemple #5
0
def test_merge_nifti2cifti():
    import nibabel as nib

    # get data
    data_l = nib.load(r'E:\tmp\l_vcAtlas_refine2.nii.gz').get_data().ravel()
    data_r = nib.load(r'E:\tmp\r_vcAtlas_refine2.nii.gz').get_data().ravel()

    cifti_reader = CiftiReader(
        r'E:\useful_things\data\HCP\HCP_S1200_GroupAvg_v1'
        r'\HCP_S1200_997_tfMRI_FACE-AVG_level2_cohensd_hp200_s4_MSMAll.dscalar.nii'
    )
    # get valid data
    bm_lr = cifti_reader.brain_models(
        ['CIFTI_STRUCTURE_CORTEX_LEFT', 'CIFTI_STRUCTURE_CORTEX_RIGHT'])
    idx2vtx_l = list(bm_lr[0].vertex_indices)
    idx2vtx_r = list(bm_lr[1].vertex_indices)
    cifti_data_l = data_l[idx2vtx_l]
    cifti_data_r = data_r[idx2vtx_r]

    # get edge_list
    cifti_data = np.c_[np.atleast_2d(cifti_data_l),
                       np.atleast_2d(cifti_data_r)]

    save2cifti(r'E:\tmp\vcAtlas_refine.dscalar.nii', cifti_data, bm_lr,
               ['surface vcAtlas'])
def calc_meas_individual(gid=1, hemi='lh', morph='thickness'):
    """
    Calculate morphology using individual ROIs.
    """
    import nibabel as nib
    import numpy as np
    import pickle as pkl
    from cxy_hcp_ffa.lib.predefine import hemi2stru, roi2label
    from commontool.io.io import CiftiReader

    morph2file = {
        'thickness': '/nfs/p1/public_dataset/datasets/hcp/DATA/'
                     'HCP_S1200_GroupAvg_v1/HCP_S1200_GroupAvg_v1/'
                     'S1200.All.thickness_MSMAll.32k_fs_LR.dscalar.nii',
        'myelin': '/nfs/p1/public_dataset/datasets/hcp/DATA/'
                  'HCP_S1200_GroupAvg_v1/HCP_S1200_GroupAvg_v1/'
                  'S1200.All.MyelinMap_BC_MSMAll.32k_fs_LR.dscalar.nii',
        'va': '/nfs/p1/public_dataset/datasets/hcp/DATA/'
              'HCP_S1200_GroupAvg_v1/HCP_S1200_GroupAvg_v1/'
              'S1200.All.midthickness_MSMAll_va.32k_fs_LR.dscalar.nii'
    }
    meas_file = morph2file[morph]
    gid_file = pjoin(proj_dir, 'analysis/s2/1080_fROI/refined_with_Kevin/'
                     f'grouping/group_id_{hemi}.npy')
    roi_file = pjoin(proj_dir, 'analysis/s2/1080_fROI/refined_with_Kevin/'
                     f'rois_v3_{hemi}.nii.gz')
    subj_file = pjoin(proj_dir, 'analysis/s2/subject_id')
    meas_id_file = pjoin(proj_dir, 'data/HCP/subject_id_1096')
    trg_file = pjoin(work_dir, f'individual_G{gid}_{morph}_{hemi}.pkl')

    gid_idx_vec = np.load(gid_file) == gid
    subj_ids = open(subj_file).read().splitlines()
    subj_ids = [subj_ids[i] for i in np.where(gid_idx_vec)[0]]
    n_subj = len(subj_ids)
    roi_maps = nib.load(roi_file).get_data().squeeze().T[gid_idx_vec]
    meas_reader = CiftiReader(meas_file)
    meas_ids = open(meas_id_file).read().splitlines()
    meas_indices = [meas_ids.index(i) for i in subj_ids]
    meas = meas_reader.get_data(hemi2stru[hemi], True)[meas_indices]

    out_dict = {'shape': 'n_roi x n_subj',
                'roi': list(roi2label.keys()),
                'subject': subj_ids,
                'meas': np.ones((len(roi2label), n_subj)) * np.nan}
    for roi_idx, roi in enumerate(out_dict['roi']):
        lbl_idx_arr = roi_maps == roi2label[roi]
        for subj_idx in range(n_subj):
            lbl_idx_vec = lbl_idx_arr[subj_idx]
            if np.any(lbl_idx_vec):
                if morph == 'va':
                    out_dict['meas'][roi_idx, subj_idx] = np.sum(
                        meas[subj_idx][lbl_idx_vec])
                else:
                    out_dict['meas'][roi_idx, subj_idx] = np.mean(
                        meas[subj_idx][lbl_idx_vec])
    pkl.dump(out_dict, open(trg_file, 'wb'))
def extract_run_series(src_file, hemis, brain_structures, trg_regions_lr):
    region_series_list = []
    reader = CiftiReader(src_file)
    for hemi in hemis:
        series = reader.get_data(brain_structures[hemi], True)
        for trg_region in trg_regions_lr[hemi]:
            region_series_list.append(np.nanmean(series[:, trg_region], 1))

    run_series = np.array(region_series_list)
    return run_series
Exemple #8
0
def calc_morphology_individual(hemi='lh', morph='thickness'):
    import nibabel as nib
    import numpy as np
    import pickle as pkl
    from commontool.io.io import CiftiReader
    from cxy_hcp_ffa.lib.predefine import hemi2stru, roi2label

    rois_file = pjoin(
        proj_dir, 'analysis/s2/1080_fROI/'
        f'refined_with_Kevin/rois_v3_{hemi}.nii.gz')
    subj_file = pjoin(proj_dir, 'analysis/s2/subject_id')
    meas_id_file = pjoin(proj_dir, 'data/HCP/subject_id_1096')
    morph2meas = {
        'thickness':
        '/nfs/p1/public_dataset/datasets/hcp/DATA/'
        'HCP_S1200_GroupAvg_v1/HCP_S1200_GroupAvg_v1/'
        'S1200.All.thickness_MSMAll.32k_fs_LR.dscalar.nii',
        'myelin':
        '/nfs/p1/public_dataset/datasets/hcp/DATA/'
        'HCP_S1200_GroupAvg_v1/HCP_S1200_GroupAvg_v1/'
        'S1200.All.MyelinMap_BC_MSMAll.32k_fs_LR.dscalar.nii',
        'va':
        '/nfs/p1/public_dataset/datasets/hcp/DATA/'
        'HCP_S1200_GroupAvg_v1/HCP_S1200_GroupAvg_v1/'
        'S1200.All.midthickness_MSMAll_va.32k_fs_LR.dscalar.nii'
    }
    meas_file = morph2meas[morph]
    trg_file = pjoin(work_dir, f'individual_{morph}_{hemi}.pkl')

    rois = nib.load(rois_file).get_data().squeeze().T
    n_roi = len(roi2label)
    subj_ids = open(subj_file).read().splitlines()
    n_subj = len(subj_ids)
    meas_reader = CiftiReader(meas_file)
    meas_ids = open(meas_id_file).read().splitlines()
    meas_indices = [meas_ids.index(i) for i in subj_ids]
    meas = meas_reader.get_data(hemi2stru[hemi], True)[meas_indices]

    roi_meas = {
        'shape': 'n_roi x n_subj',
        'roi': list(roi2label.keys()),
        'meas': np.ones((n_roi, n_subj)) * np.nan
    }
    for roi_idx, roi in enumerate(roi_meas['roi']):
        lbl_idx_arr = rois == roi2label[roi]
        for subj_idx in range(n_subj):
            lbl_idx_vec = lbl_idx_arr[subj_idx]
            if np.any(lbl_idx_vec):
                if morph == 'va':
                    tmp = np.sum(meas[subj_idx][lbl_idx_vec])
                else:
                    tmp = np.mean(meas[subj_idx][lbl_idx_vec])
                roi_meas['meas'][roi_idx, subj_idx] = tmp
    pkl.dump(roi_meas, open(trg_file, 'wb'))
Exemple #9
0
def calc_pattern_corr_between_twins(meas_name='thickness'):
    """
    Calculate spatial pattern correlation between each twin pair.
    """
    import pandas as pd
    import nibabel as nib
    from commontool.io.io import CiftiReader
    from scipy.stats import pearsonr

    twins_id_file = pjoin(work_dir, 'twins_id_1080.csv')
    meas2file = {
        'thickness':
        '/nfs/p1/public_dataset/datasets/hcp/DATA/'
        'HCP_S1200_GroupAvg_v1/HCP_S1200_GroupAvg_v1/'
        'S1200.All.thickness_MSMAll.32k_fs_LR.dscalar.nii',
        'myelin':
        '/nfs/p1/public_dataset/datasets/hcp/DATA/'
        'HCP_S1200_GroupAvg_v1/HCP_S1200_GroupAvg_v1/'
        'S1200.All.MyelinMap_BC_MSMAll.32k_fs_LR.dscalar.nii',
        'activ':
        pjoin(proj_dir, 'analysis/s2/activation.dscalar.nii')
    }
    hemis = ('lh', 'rh')
    hemi2stru = {
        'lh': 'CIFTI_STRUCTURE_CORTEX_LEFT',
        'rh': 'CIFTI_STRUCTURE_CORTEX_RIGHT'
    }
    mpm_file = pjoin(
        proj_dir, 'analysis/s2/1080_fROI/refined_with_Kevin/'
        'MPM_v3_{hemi}_0.25.nii.gz')
    roi2label = {'IOG-face': 1, 'pFus-face': 2, 'mFus-face': 3}
    zyg2label = {'MZ': 1, 'DZ': 2}
    out_file = pjoin(work_dir, f'twins_pattern-corr_{meas_name}.csv')

    df = pd.read_csv(twins_id_file)
    meas_reader = CiftiReader(meas2file[meas_name])
    meas_ids = [int(name.split('_')[0]) for name in meas_reader.map_names()]
    twin1_indices = [meas_ids.index(i) for i in df['twin1']]
    twin2_indices = [meas_ids.index(i) for i in df['twin2']]

    out_df = pd.DataFrame()
    out_df['zygosity'] = df['zygosity']
    out_df['zyg'] = [zyg2label[zyg] for zyg in df['zygosity']]
    for hemi in hemis:
        meas1 = meas_reader.get_data(hemi2stru[hemi], True)[twin1_indices]
        meas2 = meas_reader.get_data(hemi2stru[hemi], True)[twin2_indices]
        mpm = nib.load(mpm_file.format(hemi=hemi)).get_data().squeeze()
        for roi, lbl in roi2label.items():
            idx_vec = mpm == lbl
            out_df[f"{hemi}_{roi.split('-')[0]}"] = [
                pearsonr(i[idx_vec], j[idx_vec])[0]
                for i, j in zip(meas1, meas2)
            ]
    out_df.to_csv(out_file, index=False)
Exemple #10
0
def calc_meas(gid=1, hemi='lh'):
    """
    用一半被试的MPM去提取另一半被试的激活值
    如果某个被试没有某个ROI,就不提取该被试该ROI的信号

    Args:
        gid (int, optional): group ID. Defaults to '1'.
        hemi (str, optional): hemisphere. Defaults to 'lh'.
    """
    import numpy as np
    import pickle as pkl
    import nibabel as nib
    from cxy_hcp_ffa.lib.predefine import hemi2stru, roi2label
    from commontool.io.io import CiftiReader

    gh_ids = (gid * 10 + 1, gid * 10 + 2)
    gh_id_file = pjoin(split_dir, f'half_id_{hemi}.npy')
    mpm_file = pjoin(split_dir, 'MPM_GH{gh_id}_{hemi}.nii.gz')
    roi_file = pjoin(
        proj_dir, 'analysis/s2/1080_fROI/refined_with_Kevin/'
        f'rois_v3_{hemi}.nii.gz')
    subj_file = pjoin(proj_dir, 'analysis/s2/subject_id')
    src_file = pjoin(proj_dir, 'analysis/s2/activation.dscalar.nii')
    trg_file = pjoin(work_dir, f'G{gid}_activ_{hemi}.pkl')

    gh_id_vec = np.load(gh_id_file)
    gid_idx_vec = np.logical_or(gh_id_vec == gh_ids[0], gh_id_vec == gh_ids[1])
    hid_vec = gh_id_vec[gid_idx_vec]
    subj_ids = open(subj_file).read().splitlines()
    subj_ids = [subj_ids[i] for i in np.where(gid_idx_vec)[0]]
    n_subj = len(subj_ids)
    roi_maps = nib.load(roi_file).get_data().squeeze().T[gid_idx_vec]
    meas_reader = CiftiReader(src_file)
    meas = meas_reader.get_data(hemi2stru[hemi], True)[gid_idx_vec]

    out_dict = {
        'shape': 'n_roi x n_subj',
        'roi': list(roi2label.keys()),
        'subject': subj_ids,
        'meas': np.ones((len(roi2label), n_subj)) * np.nan
    }
    for gh_id in gh_ids:
        hid_idx_vec = hid_vec == gh_id
        mpm = nib.load(mpm_file.format(gh_id=gh_id,
                                       hemi=hemi)).get_data().squeeze()
        for roi_idx, roi in enumerate(out_dict['roi']):
            roi_idx_vec = np.any(roi_maps == roi2label[roi], 1)
            valid_idx_vec = np.logical_and(~hid_idx_vec, roi_idx_vec)
            mpm_idx_vec = mpm == roi2label[roi]
            meas_masked = meas[valid_idx_vec][:, mpm_idx_vec]
            out_dict['meas'][roi_idx][valid_idx_vec] = np.mean(meas_masked, 1)
    pkl.dump(out_dict, open(trg_file, 'wb'))
Exemple #11
0
def cifti_io():
    reader1 = CiftiReader(r'E:\useful_things\data\HCP\HCP_S1200_GroupAvg_v1\HCP_S1200_GroupAvg_v1'
                          r'\HCP_S1200_997_tfMRI_ALLTASKS_level2_cohensd_hp200_s4_MSMAll.dscalar.nii')

    save2cifti(r'E:\tmp\HCP_S1200_997_tfMRI_FACE-AVG_level2_cohensd_hp200_s4_MSMAll.dscalar.nii',
               np.atleast_2d(reader1.get_data()[19]),
               reader1.brain_models(), reader1.map_names([19]), reader1.volume, reader1.label_tables([19]))

    reader2 = CiftiReader(r'E:\tmp\HCP_S1200_997_tfMRI_FACE-AVG_level2_cohensd_hp200_s4_MSMAll.dscalar.nii')
    data1 = reader1.get_data('CIFTI_STRUCTURE_CORTEX_LEFT', zeroize=True)[19]
    print(data1)
    data2 = reader2.get_data('CIFTI_STRUCTURE_CORTEX_LEFT', zeroize=True)[0]
    print(data2)
    print(np.max(data1 - data2), np.min(data1 - data2))
def prepare_data():
    from os.path import join as pjoin
    from commontool.io.io import CiftiReader, save2nifti

    hemi = 'lh'
    brain_structure = {
        'lh': 'CIFTI_STRUCTURE_CORTEX_LEFT',
        'rh': 'CIFTI_STRUCTURE_CORTEX_RIGHT'
    }
    proj_dir = '/nfs/s2/userhome/chenxiayu/workingdir/study/FFA_pattern'
    data_dir = pjoin(proj_dir, 'data/HCP')
    trg_dir = pjoin(proj_dir, f'analysis/s2_rh')
    trg_file = pjoin(trg_dir, f'curvature_{hemi}.nii.gz')
    subj_id_file = pjoin(trg_dir, 'subject_id')
    subj_id_all_file = pjoin(data_dir, 'structure/subject_id_curv')
    data_file = pjoin(
        data_dir, 'structure/S1200.All.curvature_MSMAll.32k_fs_LR.dscalar.nii')

    subj_ids = open(subj_id_file).read().splitlines()
    subj_ids_all = open(subj_id_all_file).read().splitlines()
    data = CiftiReader(data_file).get_data(brain_structure[hemi], True)

    indices = []
    for i in subj_ids:
        indices.append(subj_ids_all.index(i))

    data_new = data[indices]
    data_new = data_new.T[:, None, None, :]
    save2nifti(trg_file, data_new)
def save_mean_maps():
    import os
    import numpy as np

    from os.path import join as pjoin
    from commontool.io.io import CiftiReader, save2nifti

    # predefine parameters
    cluster_nums = [2]
    hemi = 'lh'
    structure_name = 'curv'
    project_dir = '/nfs/s2/userhome/chenxiayu/workingdir/study/FFA_clustering'
    src_file = pjoin(
        project_dir,
        'data/HCP_1080/S1200_1080_curvature_MSMAll_32k_fs_LR.dscalar.nii')
    cluster_num_dirs = pjoin(project_dir,
                             's2_25_zscore/HAC_ward_euclidean/{}clusters')

    brain_structure = hemi2structure[hemi]

    # prepare data
    reader = CiftiReader(src_file)
    maps = reader.get_data(brain_structure, True)

    for cluster_num in cluster_nums:
        # get clustering labels of subjects
        cluster_num_dir = cluster_num_dirs.format(cluster_num)
        group_labels_path = pjoin(cluster_num_dir, 'group_labels')
        with open(group_labels_path) as rf:
            group_labels = np.array(rf.read().split(' '), dtype=np.uint16)

        mean_maps = np.zeros((0, maps.shape[1]))
        for label in sorted(set(group_labels)):
            subgroup_maps = maps[group_labels == label]
            subgroup_maps_mean = np.atleast_2d(np.mean(subgroup_maps, 0))
            mean_maps = np.r_[mean_maps, subgroup_maps_mean]

        # output
        out_dir = pjoin(cluster_num_dir, 'structure')
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)
        save2nifti(
            pjoin(out_dir,
                  '{}_{}_mean_maps.nii.gz'.format(hemi, structure_name)),
            mean_maps)

        print('{}_{}clusters: done'.format(structure_name, cluster_num))
Exemple #14
0
def calc_meas_MPM(hemi='lh'):
    """
    用一半被试的MPM去提取另一半被试的激活值
    如果某个被试没有某个ROI,就不提取该被试该ROI的信号

    Args:
        hemi (str, optional): hemisphere. Defaults to 'lh'.
    """
    import numpy as np
    import pickle as pkl
    import nibabel as nib
    from cxy_hcp_ffa.lib.predefine import hemi2stru, roi2label
    from commontool.io.io import CiftiReader

    hids = (1, 2)
    hid_file = pjoin(split_dir, 'half_id.npy')
    mpm_file = pjoin(split_dir, 'MPM_half{hid}_{hemi}.nii.gz')
    roi_file = pjoin(proj_dir, 'analysis/s2/1080_fROI/refined_with_Kevin/'
                               f'rois_v3_{hemi}.nii.gz')
    src_file = pjoin(proj_dir, 'analysis/s2/activation.dscalar.nii')
    trg_file = pjoin(work_dir, f'activ_{hemi}.pkl')

    hid_vec = np.load(hid_file)
    n_subj = len(hid_vec)
    roi_maps = nib.load(roi_file).get_data().squeeze().T
    n_roi = len(roi2label)
    meas_reader = CiftiReader(src_file)
    meas = meas_reader.get_data(hemi2stru[hemi], True)

    out_dict = {'shape': 'n_roi x n_subj',
                'roi': list(roi2label.keys()),
                'meas': np.ones((n_roi, n_subj)) * np.nan}
    for hid in hids:
        hid_idx_vec = hid_vec == hid
        mpm = nib.load(mpm_file.format(hid=hid, hemi=hemi)
                       ).get_data().squeeze()
        for roi_idx, roi in enumerate(out_dict['roi']):
            roi_idx_vec = np.any(roi_maps == roi2label[roi], 1)
            valid_idx_vec = np.logical_and(~hid_idx_vec, roi_idx_vec)
            mpm_idx_vec = mpm == roi2label[roi]
            meas_masked = meas[valid_idx_vec][:, mpm_idx_vec]
            out_dict['meas'][roi_idx][valid_idx_vec] = np.mean(meas_masked, 1)
    pkl.dump(out_dict, open(trg_file, 'wb'))
def get_roi_pattern():
    import os
    import numpy as np
    import nibabel as nib

    from os.path import join as pjoin
    from FFA_pattern.tool import get_roi_pattern
    from commontool.io.io import CiftiReader

    print('Start: predefine some variates')
    # -----------------------
    # predefine parameters
    hemi = 'lh'
    brain_structure = {
        'lh': 'CIFTI_STRUCTURE_CORTEX_LEFT',
        'rh': 'CIFTI_STRUCTURE_CORTEX_RIGHT'
    }
    zscore = True  # If true, do z-score on each subject's ROI pattern
    thr = None  # a threshold used to cut FFA_data before clustering (default: None)
    bin = False  # If true, binarize FFA_data according to clustering_thr
    size_min = 0  # only work with threshold

    # predefine paths
    proj_dir = '/nfs/s2/userhome/chenxiayu/workingdir/study/FFA_pattern'
    trg_dir = pjoin(proj_dir, f'analysis/s2/lh/zscore')
    if not os.path.isdir(trg_dir):
        os.makedirs(trg_dir)
    roi_file = pjoin(proj_dir,
                     f'data/HCP/label/MMPprob_OFA_FFA_thr1_{hemi}.label')
    activ_file = pjoin(proj_dir, f'analysis/s2/activation.dscalar.nii')
    # geo_files = '/nfs/p1/public_dataset/datasets/hcp/DATA/HCP_S1200_GroupAvg_v1/' \
    #             'HCP_S1200_GroupAvg_v1/S1200.{}.white_MSMAll.32k_fs_LR.surf.gii'
    geo_files = None
    # mask_file = pjoin(proj_dir, f'data/HCP_face-avg/s2/patches_15/crg2.3/{hemi[0]}FFA_patch_maps_lt15.nii.gz')
    mask_file = None
    # -----------------------
    print('Finish: predefine some variates')

    if mask_file is not None:
        mask = nib.load(mask_file).get_data().squeeze().T != 0
    else:
        mask = None
    if geo_files is None:
        faces = None
    else:
        raise NotImplementedError

    # activ = nib.load(activ_file).get_data().squeeze().T
    activ = CiftiReader(activ_file).get_data(brain_structure[hemi], True)
    roi = nib.freesurfer.read_label(roi_file)
    roi_patterns = get_roi_pattern(activ, roi, zscore, thr, bin, size_min,
                                   faces, mask)

    np.save(pjoin(trg_dir, f'roi_patterns.npy'), roi_patterns)
Exemple #16
0
def PA_plot(src_file, brain_structures, PAs, masks, group_labels, axes, color,
            item, zscore, item_ys_dict, item_mask_values_dict):

    item_ys_dict[item] = np.zeros_like(axes, np.object)
    item_mask_values_dict[item] = np.zeros_like(axes, np.object)
    reader = CiftiReader(src_file)
    for col in range(2):
        PA = PAs[col]
        mask = masks[col]
        x = np.arange(len(PA))
        data = reader.get_data(brain_structures[col], True)
        PA_maps = data[:, PA]
        mask_maps = data[:, mask]
        # if zscore:
        #     PA_maps = stats.zscore(PA_maps, 1)
        #     mask_maps = stats.zscore(mask_maps, 1)
        for row, label in enumerate(sorted(set(group_labels))):
            subgroup_PA_maps = np.atleast_2d(PA_maps[group_labels == label])
            subgroup_mask_maps = np.atleast_2d(
                mask_maps[group_labels == label])
            y = np.mean(subgroup_PA_maps, 0)
            mask_value = np.mean(subgroup_mask_maps, 0)
            if zscore:
                y = stats.zscore(y)
                mask_value = stats.zscore(mask_value)
                axes[row, col].plot(x, y, color=color, label=item)
            else:
                sem = stats.sem(subgroup_PA_maps, 0)
                axes[row, col].errorbar(x,
                                        y,
                                        yerr=sem,
                                        color=color,
                                        label=item)
            axes[row, col].set_title('group' + str(label))
            item_ys_dict[item][row, col] = y
            item_mask_values_dict[item][row, col] = mask_value
Exemple #17
0
def calc_connect(series_files, subject, hemis, brain_structures,
                 group_labels_uniq, roi_files, label1, count, sub_subject_num):

    # check if the file exists
    series_LR_file = series_files.format(subject=subject, phase='LR')
    series_RL_file = series_files.format(subject=subject, phase='RL')
    pass_subject = False
    log_list = []
    if not os.path.exists(series_LR_file):
        pass_subject = True
        log_list.append('Path-{} does not exist!'.format(series_LR_file))
    if not os.path.exists(series_RL_file):
        pass_subject = True
        log_list.append('Path-{} dose not exist!'.format(series_RL_file))
    if pass_subject:
        return log_list

    result = dict()
    reader_LR = CiftiReader(series_LR_file)
    reader_RL = CiftiReader(series_RL_file)
    for hemi1 in hemis:
        series_LR, map_shape_LR, idx2vtx_LR = reader_LR.get_data(
            brain_structures[hemi1])
        series_RL, map_shape_RL, idx2vtx_RL = reader_RL.get_data(
            brain_structures[hemi1])
        assert map_shape_LR == map_shape_RL and idx2vtx_LR == idx2vtx_RL
        series_LR = stats.zscore(series_LR, 0)
        series_RL = stats.zscore(series_RL, 0)
        series = np.r_[series_LR, series_RL]
        vtx2idx = np.ones(map_shape_LR, dtype=np.uint16) * -1
        vtx2idx[idx2vtx_LR] = np.arange(len(idx2vtx_LR))
        for label2 in group_labels_uniq:
            for hemi2 in hemis:
                roi_file = roi_files.format(hemi2=hemi2[0], label2=label2)
                roi_labels_arr = nib.load(roi_file).get_data().ravel()
                roi_labels_uniq = np.unique(roi_labels_arr).astype(np.uint8)
                for roi_label in roi_labels_uniq:
                    if roi_label == 0:
                        continue
                    seed_vertices = np.where(roi_labels_arr == roi_label)[0]
                    seed_series = np.mean(series[:, vtx2idx[seed_vertices]], 1)
                    connections = np.ones_like(vtx2idx, np.float64) * math.nan
                    for idx in range(series.shape[1]):
                        trg_series = series[:, idx]
                        connections[idx2vtx_LR[idx]] = stats.pearsonr(
                            seed_series, trg_series)[0]

                    result[(hemi2[0], label2, roi_label, hemi1[0],
                            label1)] = connections
                    result[('subject', label1)] = subject
                    print('group{}_subject{}/{}_{}{}_FFA{}_connect_{}'.format(
                        label1, count, sub_subject_num, hemi2[0], label2,
                        roi_label, hemi1[0]))
    return result
Exemple #18
0
def get_valid_id(sess=1, run='LR'):
    import os
    import time
    from commontool.io.io import CiftiReader

    # parameters
    subj_id_file = pjoin(proj_dir, 'analysis/s2/subject_id')
    maps_files = '/nfs/m1/hcp/{0}/MNINonLinear/Results/rfMRI_REST{1}_{2}/'\
                 'rfMRI_REST{1}_{2}_Atlas_MSMAll_hp2000_clean.dtseries.nii'

    # outputs
    log_file = pjoin(work_dir, f'get_valid_id_log_{sess}_{run}')
    trg_file = pjoin(work_dir, f'rfMRI_REST{sess}_{run}_id')

    subj_ids = open(subj_id_file).read().splitlines()
    n_subj = len(subj_ids)

    valid_ids = []
    log_writer = open(log_file, 'w')
    for idx, subj_id in enumerate(subj_ids, 1):
        time1 = time.time()
        maps_file = maps_files.format(subj_id, sess, run)
        if not os.path.exists(maps_file):
            msg = f'{maps_file} is not exist.'
            print(msg)
            log_writer.write(f'{msg}\n')
            continue
        try:
            data = CiftiReader(maps_file).get_data()
        except OSError:
            msg = f'{maps_file} meets OSError.'
            print(msg)
            log_writer.write(f'{msg}\n')
            continue
        if data.shape[0] != 1200:
            msg = f'The number of time points in {maps_file} is not 1200.'
            print(msg)
            log_writer.write(f'{msg}\n')
            continue
        valid_ids.append(subj_id)
        print(f'Finished: {idx}/{n_subj}, cost: {time.time() - time1} seconds')
    log_writer.close()

    # save out
    with open(trg_file, 'w') as wf:
        wf.write('\n'.join(valid_ids))
Exemple #19
0
def calc_subgroup_mean_representation():
    import os
    import numpy as np
    import nibabel as nib
    import pickle as pkl

    from os.path import join as pjoin
    from scipy.spatial.distance import cdist
    from commontool.io.io import CiftiReader

    hemi = 'rh'
    brain_structure = {
        'lh': 'CIFTI_STRUCTURE_CORTEX_LEFT',
        'rh': 'CIFTI_STRUCTURE_CORTEX_RIGHT'
    }
    proj_dir = '/nfs/s2/userhome/chenxiayu/workingdir/study/FFA_pattern'
    clustering_dir = pjoin(proj_dir, 'analysis/s2_rh')
    n_cluster_dir = pjoin(clustering_dir, 'raw/HAC_ward_euclidean/100clusters')
    repre_dir = pjoin(n_cluster_dir, 'activation/representation')
    if not os.path.exists(repre_dir):
        os.makedirs(repre_dir)

    roi_file = pjoin(
        proj_dir, 'data/HCP/label/MMPprob_OFA_FFA_thr1_{}.label'.format(hemi))
    activ_file = pjoin(clustering_dir, 'activation.dscalar.nii')
    group_labels_file = pjoin(n_cluster_dir, 'group_labels')

    roi = nib.freesurfer.read_label(roi_file)
    # activ = nib.load(activ_file).get_data().squeeze().T
    activ = CiftiReader(activ_file).get_data(brain_structure[hemi], True)
    group_labels = np.array(open(group_labels_file).read().split(' '),
                            dtype=np.uint16)
    roi_activ = activ[:, roi]

    labels_uniq = np.unique(group_labels)
    representations = dict()
    for label in labels_uniq:
        sub_roi_activ = np.atleast_2d(roi_activ[group_labels == label])
        sub_roi_mean = np.mean(sub_roi_activ, 0)[None, :]
        representations[str(label)] = 1 - cdist(sub_roi_mean, sub_roi_activ,
                                                'correlation')[0]

    pkl.dump(representations,
             open(pjoin(repre_dir, f'representation_{hemi}.pkl'), 'wb'))
Exemple #20
0
    import os
    import numpy as np

    from os.path import join as pjoin
    from commontool.io.io import CiftiReader, save2cifti

    project_dir = '/nfs/s2/userhome/chenxiayu/workingdir/study/FFA_clustering'
    curv_file = pjoin(project_dir, 'data/HCP_1080/S1200_1080_curvature_MSMAll_32k_fs_LR.dscalar.nii')
    aparc_file = pjoin(project_dir, 'data/HCP_1080/S1200_1080_aparc_a2009s_32k_fs_LR.dlabel.nii')
    cluster_num_dir = pjoin(project_dir, 's2_25_zscore/HAC_ward_euclidean/2clusters')
    group_labels_file = pjoin(cluster_num_dir, 'group_labels')
    mfs_dir = pjoin(cluster_num_dir, 'mfs')
    if not os.path.exists(mfs_dir):
        os.makedirs(mfs_dir)

    curv_reader = CiftiReader(curv_file)
    aparc_reader = CiftiReader(aparc_file)
    sulc_mask = curv_reader.get_data() < 0
    fusiform_mask = np.logical_or(aparc_reader.get_data() == 21, aparc_reader.get_data() == 96)

    with open(group_labels_file) as rf:
        group_labels = np.array(rf.read().split(' '), dtype=np.uint16)

    mfs_prob_maps = []
    fusiform_prob_maps = []
    map_names = []
    for label in sorted(set(group_labels)):
        indices = group_labels == label
        subgroup_mfs_mask = np.logical_and(sulc_mask[indices], fusiform_mask[indices])
        subgroup_mfs_prob = np.mean(subgroup_mfs_mask, 0)
        subgroup_fusiform_prob = np.mean(fusiform_mask[indices], 0)
    with open(filler_file0) as f0:
        fillers_c0 = f0.read().splitlines()
    src_paths = get_strings_by_filling(string, [fillers_c0])

    log_file = open(os.path.join(target_dir, 'cifti_merge_log'), 'w+')
    merged_data = []
    map_names = []
    reader = None
    for fpath in src_paths:
        if not os.path.exists(fpath):
            message = 'Path-{0} does not exist!\n'.format(fpath)
            print(message, end='')
            log_file.writelines(message)
            continue

        reader = CiftiReader(fpath)
        # If don't use .copy(), the merged_data will share the same data object with data in reader.
        # As a result, the memory space occupied by the whole data in reader will be reserved.
        # But we only need one row of the whole data, so we can use the .copy() to make the element
        # avoid being a reference to the row of the whole data. Then, the whole data in reader will
        # be regarded as a garbage and collected by Garbage Collection Program.
        merged_data.append(reader.get_data()[column - 1].copy())
        map_names.append(reader.map_names()[column - 1])
        print('Merged:', fpath)
    if reader is None:
        message = "Can't find any valid source path\n"
        print(message, end='')
        log_file.writelines(message)
    else:
        message = 'Start save2cifti\n'
        print(message, end='')
Exemple #22
0
        for hemi in hemis:
            subFFA_file = subFFA_files.format(hemi[0], group_label)
            subFFA_file_name = os.path.basename(subFFA_file)
            subFFA_name = subFFA_file_name.split('.')[0]
            subFFA_data = nib.load(subFFA_file).get_data().ravel()
            trg_regions_lr[hemi].append(np.where(subFFA_data != 0)[0])
            label_names_lr[hemi].append(subFFA_name)
            subFFA_data_uniq = np.unique(subFFA_data).astype(np.uint8)
            for subFFA_label in subFFA_data_uniq:
                if subFFA_label != 0:
                    trg_regions_lr[hemi].append(
                        np.where(subFFA_data == subFFA_label)[0])
                    label_names_lr[hemi].append(subFFA_name +
                                                str(subFFA_label))

    reader = CiftiReader(acti_maps_file)

    # label_names = label_names_lr[hemis[0]] + label_names_lr[hemis[1]]
    # open(pjoin(acti_analysis_dir, 'npy_column_name'), 'w+').write(','.join(label_names))
    # ---activation intensity start---
    # for group_label in group_labels_uniq:
    #     indices = np.where(group_labels == group_label)[0]
    #     roi_means_arr = np.zeros((len(indices), 0))
    #     for hemi in hemis:
    #         acti_maps = reader.get_data(brain_structure[hemi], True)
    #         sub_acti_maps = acti_maps[indices]
    #         for region in trg_regions_lr[hemi]:
    #             roi_mean = np.atleast_2d(np.nanmean(sub_acti_maps[:, region], 1)).T
    #             roi_means_arr = np.c_[roi_means_arr, roi_mean]
    #     np.save(pjoin(acti_analysis_dir, 'g{}_intensity.npy'.format(group_label)), roi_means_arr)
    # ---activation intensity end---
        'data/S1200_1080_WM_cope{0}_{1}_s2_MSMAll_32k_fs_LR.dscalar.nii')
    group_labels_path = pjoin(n_clusters_dir, 'group_labels')
    # -----------------------

    # get data
    with open(group_labels_path) as f:
        group_labels = np.array(f.read().split(' '))

    # analyze labels
    # --------------
    cope_dict = dict()
    for roi in rois:
        cope_dict[roi] = dict()
    for k, v in interested_copes.items():
        cope_file = cope_files.format(k, v)
        cope_data = CiftiReader(cope_file).get_data(brain_structure, True)
        for roi in rois:
            roi_vertices = nib.freesurfer.read_label(roi_file.format(roi))
            cope_data_roi = cope_data[:, roi_vertices]
            if roi2label:
                # get subgroup data
                sub_cope_data_roi = np.atleast_2d(
                    cope_data_roi[group_labels == roi2label[roi]])
                sub_cope_data_roi_mean = np.mean(sub_cope_data_roi, axis=1)
                cope_dict[roi][v] = sub_cope_data_roi_mean
            else:
                cope_data_roi_mean = np.mean(cope_data_roi, axis=1)
                cope_dict[roi][v] = cope_data_roi_mean
        print('Finished: {0}_{1}'.format(k, v))

    # output copes
def different_activation_gender_roi2allsubgroup(b_dict):
    # file paths
    maps_file = pjoin(
        project_dir,
        'data/HCP_1080/S1200_1080_WM_cope19_FACE-AVG_s2_MSMAll_32k_fs_LR.dscalar.nii'
    )
    cluster_num_dir = pjoin(project_dir,
                            's2_25_zscore/HAC_ward_euclidean/2clusters')
    roi_files = pjoin(cluster_num_dir, 'activation/{hemi}{label}_FFA.nii.gz')
    group_labels_file = pjoin(cluster_num_dir, 'group_labels')

    with open(group_labels_file) as f:
        group_labels = np.array(f.read().split(' '), dtype=np.uint16)

    cifti_reader = CiftiReader(maps_file)
    lmaps = cifti_reader.get_data('CIFTI_STRUCTURE_CORTEX_LEFT', True)
    rmaps = cifti_reader.get_data('CIFTI_STRUCTURE_CORTEX_RIGHT', True)
    # get gender labels
    subjects = np.array(b_dict['Subject'])
    genders = np.array(b_dict['Gender'])
    subjects_m = subjects[genders == 'M']
    subjects_f = subjects[genders == 'F']
    map2subject = [name.split('_')[0] for name in cifti_reader.map_names()]
    gender_labels = np.zeros((len(map2subject), ), dtype=np.str)
    for idx, subj_id in enumerate(map2subject):
        if subj_id in subjects_m:
            gender_labels[idx] = 'M'
        elif subj_id in subjects_f:
            gender_labels[idx] = 'F'

    means_m = []
    means_f = []
    sems_m = []
    sems_f = []
    for roi in rois:
        roi_file = roi_files.format(roi[:-1])
        roi_mask = nib.load(roi_file).get_data().ravel()
        roi_vertices = np.where(roi_mask == int(roi[-1]))[0]
        if roi[0] == 'l':
            roi_maps = lmaps[:, roi_vertices]
        elif roi[0] == 'r':
            roi_maps = rmaps[:, roi_vertices]
        else:
            raise RuntimeError("invalid roi name: {}".format(roi))

        male_indices = np.logical_and(gender_labels == 'M',
                                      group_labels == roi[1])
        female_indices = np.logical_and(gender_labels == 'F',
                                        group_labels == roi[1])
        roi_map_means_m = np.mean(roi_maps[male_indices], 1)
        roi_map_means_f = np.mean(roi_maps[female_indices], 1)
        # print('the number of males about {0}: {1}'.format(roi, roi_map_means_m.shape[0]))
        # print('the number of females about {0}: {1}'.format(roi, roi_map_means_f.shape[0]))
        print('{0}_male vs. {0}_female: p={1}'.format(
            roi,
            ttest_ind(roi_map_means_m, roi_map_means_f)[1]))

        means_m.append(np.mean(roi_map_means_m))
        means_f.append(np.mean(roi_map_means_f))
        sems_m.append(sem(roi_map_means_m))
        sems_f.append(sem(roi_map_means_f))

    x = np.arange(len(rois))
    fig, ax = plt.subplots()
    width = auto_bar_width(x, 2)
    rects1 = ax.bar(x,
                    means_m,
                    width,
                    color='b',
                    alpha=0.5,
                    yerr=sems_m,
                    ecolor='blue')
    rects2 = ax.bar(x + width,
                    means_f,
                    width,
                    color='r',
                    alpha=0.5,
                    yerr=sems_f,
                    ecolor='red')
    # show_bar_value(rects1, '.3f')
    # show_bar_value(rects2, '.3f')
    ax.legend((rects1, rects2), ('male', 'female'))
    ax.set_xticks(x + width / 2.0)
    ax.set_xticklabels(rois)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.set_ylabel('activation (z-stat)')

    plt.tight_layout()
    plt.show()
def different_activation_gender_1080(b_dict):
    # file paths
    maps_file = pjoin(
        project_dir,
        'data/HCP_1080/S1200_1080_WM_cope19_FACE-AVG_s2_MSMAll_32k_fs_LR.dscalar.nii'
    )
    lFFA_file = pjoin(project_dir,
                      'data/HCP_1080/face-avg_s2/label/lFFA_25.label')
    rFFA_file = pjoin(project_dir,
                      'data/HCP_1080/face-avg_s2/label/rFFA_25.label')

    # get maps
    cifti_reader = CiftiReader(maps_file)
    lFFA = nib.freesurfer.read_label(lFFA_file)
    rFFA = nib.freesurfer.read_label(rFFA_file)
    lFFA_maps = cifti_reader.get_data('CIFTI_STRUCTURE_CORTEX_LEFT',
                                      True)[:, lFFA]
    rFFA_maps = cifti_reader.get_data('CIFTI_STRUCTURE_CORTEX_RIGHT',
                                      True)[:, rFFA]

    # get subjects' ids
    subjects = np.array(b_dict['Subject'])
    genders = np.array(b_dict['Gender'])
    subjects_m = subjects[genders == 'M']
    subjects_f = subjects[genders == 'F']
    map2subject = [name.split('_')[0] for name in cifti_reader.map_names()]

    gender_labels = np.zeros((lFFA_maps.shape[0], ), dtype=np.str)
    for idx, subj_id in enumerate(map2subject):
        if subj_id in subjects_m:
            gender_labels[idx] = 'M'
        elif subj_id in subjects_f:
            gender_labels[idx] = 'F'

    lFFA_maps_mean = np.mean(lFFA_maps, 1)
    rFFA_maps_mean = np.mean(rFFA_maps, 1)
    lFFA_maps_mean_m = np.mean(lFFA_maps[gender_labels == 'M'], 1)
    lFFA_maps_mean_f = np.mean(lFFA_maps[gender_labels == 'F'], 1)
    rFFA_maps_mean_m = np.mean(rFFA_maps[gender_labels == 'M'], 1)
    rFFA_maps_mean_f = np.mean(rFFA_maps[gender_labels == 'F'], 1)
    print('lFFA vs. rFFA: p={}'.format(
        ttest_ind(lFFA_maps_mean, rFFA_maps_mean)[1]))
    print('lFFA_male vs. lFFA_female: p={}'.format(
        ttest_ind(lFFA_maps_mean_m, lFFA_maps_mean_f)[1]))
    print('rFFA_male vs. rFFA_female: p={}'.format(
        ttest_ind(rFFA_maps_mean_m, rFFA_maps_mean_f)[1]))
    print('lFFA_male vs. rFFA_male: p={}'.format(
        ttest_ind(lFFA_maps_mean_m, rFFA_maps_mean_m)[1]))
    print('lFFA_female vs. rFFA_female: p={}'.format(
        ttest_ind(lFFA_maps_mean_f, rFFA_maps_mean_f)[1]))

    l_mean = np.mean(lFFA_maps_mean)
    r_mean = np.mean(rFFA_maps_mean)
    l_sem = sem(lFFA_maps_mean)
    r_sem = sem(rFFA_maps_mean)
    l_m_mean = np.mean(lFFA_maps_mean_m)
    l_f_mean = np.mean(lFFA_maps_mean_f)
    r_m_mean = np.mean(rFFA_maps_mean_m)
    r_f_mean = np.mean(rFFA_maps_mean_f)
    l_m_sem = sem(lFFA_maps_mean_m)
    l_f_sem = sem(lFFA_maps_mean_f)
    r_m_sem = sem(rFFA_maps_mean_m)
    r_f_sem = sem(rFFA_maps_mean_f)

    x = np.arange(2)
    fig, ax = plt.subplots()
    width = auto_bar_width(x, 3)
    rects1 = ax.bar(x, [l_mean, r_mean],
                    width,
                    color='g',
                    alpha=0.5,
                    yerr=[l_sem, r_sem],
                    ecolor='green')
    rects2 = ax.bar(x - width, [l_m_mean, r_m_mean],
                    width,
                    color='b',
                    alpha=0.5,
                    yerr=[l_m_sem, r_m_sem],
                    ecolor='blue')
    rects3 = ax.bar(x + width, [l_f_mean, r_f_mean],
                    width,
                    color='r',
                    alpha=0.5,
                    yerr=[l_f_sem, r_f_sem],
                    ecolor='red')
    # show_bar_value(rects1, '.3f')
    # show_bar_value(rects2, '.3f')
    # show_bar_value(rects3, '.3f')
    ax.legend((rects1, rects2, rects3), ('both', 'male', 'female'))
    ax.set_xticks(x)
    ax.set_xticklabels(['lFFA_2mm', 'rFFA_2mm'])
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.set_ylabel('activation (z-stat)')

    plt.tight_layout()
    plt.show()
Exemple #26
0
    from os.path import join as pjoin
    from commontool.io.io import CiftiReader, save2nifti

    project_dir = '/nfs/s2/userhome/chenxiayu/workingdir/study/FFA_clustering'
    acti_file = pjoin(
        project_dir,
        'data/HCP_face-avg/s2/S1200.1080.FACE-AVG_level2_zstat_hp200_s2_MSMAll.dscalar.nii'
    )
    patch_dir = pjoin(project_dir, 'data/HCP_face-avg/s2/patches_15/crg')
    patch_file = pjoin(patch_dir, 'rFFA_patch_maps_lt15.nii.gz')
    max_maps_file = pjoin(patch_dir, 'rFFA_max_maps_lt15.nii.gz')
    prob_max_map_file = pjoin(patch_dir, 'rFFA_prob_max_map_lt15.nii.gz')
    brain_structure = 'CIFTI_STRUCTURE_CORTEX_RIGHT'

    acti_maps = CiftiReader(acti_file).get_data(brain_structure, True)
    patch_maps = nib.load(patch_file).get_data()
    max_maps = np.zeros_like(patch_maps)
    for row in range(acti_maps.shape[0]):
        labels = np.unique(patch_maps[row])
        for label in labels:
            if label == 0:
                continue
            acti_map_tmp = acti_maps[row].copy()
            not_label_indices = np.logical_not(patch_maps[row] == label)
            acti_map_tmp[not_label_indices] = -np.inf
            max_idx = np.argmax(acti_map_tmp)
            max_maps[row, max_idx] = label
    prob_max_map = np.mean(max_maps > 0, 0)

    header = nib.Nifti2Header()
Exemple #27
0
    }
    # predefine paths
    project_dir = '/nfs/s2/userhome/chenxiayu/workingdir/study/FFA_clustering'
    maps_file = pjoin(
        project_dir,
        'data/HCP_1080/S1200_1080_WM_Mean_BOLD_Signal_MSMAll_32k_fs_LR.dscalar.nii'
    )
    cluster_num_dir = pjoin(project_dir,
                            's2_25_zscore/HAC_ward_euclidean/2clusters')
    group_labels_file = pjoin(cluster_num_dir, 'group_labels')
    mean_bold_signal_dir = pjoin(cluster_num_dir, 'mean_bold_signal')
    if not os.path.exists(mean_bold_signal_dir):
        os.makedirs(mean_bold_signal_dir)
    # -----------------------

    maps = CiftiReader(maps_file).get_data(brain_structure[hemi], True)
    group_labels = np.array(open(group_labels_file).read().split(' '),
                            dtype=np.uint16)

    # ---mean_map start---
    # save2mean_map(maps, group_labels,
    #               pjoin(mean_bold_signal_dir, '{}_mean_maps.nii.gz'.format(hemi)))
    # ---mean_map end---

    compare_dir = pjoin(mean_bold_signal_dir, 'compare')
    if not os.path.exists(compare_dir):
        os.makedirs(compare_dir)
    # ---compare start---
    pair_labels = [1, 2]
    samples1 = maps[group_labels == pair_labels[0]].T
    samples2 = maps[group_labels == pair_labels[1]].T
Exemple #28
0
if __name__ == '__main__':
    import numpy as np

    from os.path import join as pjoin
    from commontool.io.io import CiftiReader, save2cifti

    project_dir = '/nfs/s2/userhome/chenxiayu/workingdir/study/FFA_clustering'
    test_par = pjoin(project_dir, 'data/HCP/tseries_test_dir')
    series_LR_files = pjoin(test_par, '{subject}/tfMRI_WM_LR_Atlas_MSMAll.dtseries.nii')
    series_RL_files = pjoin(test_par, '{subject}/tfMRI_WM_RL_Atlas_MSMAll.dtseries.nii')
    mean_signal_maps_out = pjoin(test_par, 'tfMRI_WM_Mean_BOLD_Signal_MSMAll_new.dscalar.nii')

    subject_ids = open(pjoin(test_par, 'subject_id')).read().splitlines()

    mean_signal_maps = []
    for subject in subject_ids:
        series_LR_file = series_LR_files.format(subject=subject)
        series_RL_file = series_RL_files.format(subject=subject)
        reader_LR = CiftiReader(series_LR_file)
        reader_RL = CiftiReader(series_RL_file)
        series_LR = reader_LR.get_data()
        series_RL = reader_RL.get_data()
        series = np.r_[series_LR, series_RL]
        mean_signal = np.mean(series, 0)
        mean_signal_maps.append(mean_signal)

        print('Finish:', subject)

    save2cifti(mean_signal_maps_out, np.array(mean_signal_maps), reader_RL.brain_models(), subject_ids)
    maps_file = pjoin(
        project_dir,
        'data/HCP_face-avg/s2/S1200.1080.FACE-AVG_level2_zstat_hp200_s2_MSMAll.dscalar.nii'
    )
    subject_ids_file = pjoin(project_dir, 'data/HCP_face-avg/s2/subject_id')
    patch_dir = pjoin(
        project_dir,
        'data/HCP_face-avg/s2/patches_15/{}{}'.format(method, threshold))
    if not os.path.exists(patch_dir):
        os.makedirs(patch_dir)

    lFFA_vertices = nib.freesurfer.read_label(lFFA_label_file)
    lFFA_vertices = set(lFFA_vertices.astype(np.uint16))
    rFFA_vertices = nib.freesurfer.read_label(rFFA_label_file)
    rFFA_vertices = set(rFFA_vertices.astype(np.uint16))
    c_reader = CiftiReader(maps_file)
    lmaps = c_reader.get_data('CIFTI_STRUCTURE_CORTEX_LEFT', True)
    rmaps = c_reader.get_data('CIFTI_STRUCTURE_CORTEX_RIGHT', True)
    with open(subject_ids_file) as rf:
        subject_ids = rf.read().splitlines()

    g_reader_l = GiftiReader(
        '/nfs/p1/public_dataset/datasets/hcp/DATA/HCP_S1200_GroupAvg_v1/'
        'HCP_S1200_GroupAvg_v1/S1200.L.white_MSMAll.32k_fs_LR.surf.gii')
    g_reader_r = GiftiReader(
        '/nfs/p1/public_dataset/datasets/hcp/DATA/HCP_S1200_GroupAvg_v1/'
        'HCP_S1200_GroupAvg_v1/S1200.R.white_MSMAll.32k_fs_LR.surf.gii')

    lFFA_patch_maps = np.zeros_like(lmaps)
    lFFA_patch_stats = []
    for idx, lmap in enumerate(lmaps):
if __name__ == '__main__':
    from os.path import join as pjoin
    from commontool.io.io import CiftiReader, save2cifti

    # predefine some variates
    project_dir = '/nfs/s2/userhome/chenxiayu/workingdir/study/FFA_clustering'

    reader = CiftiReader(
        '/nfs/p1/public_dataset/datasets/hcp/DATA/HCP_S1200_GroupAvg_v1/'
        'HCP_S1200_GroupAvg_v1/S1200.All.MyelinMap_BC_MSMAll.32k_fs_LR.dscalar.nii'
    )
    data = reader.get_data()
    names = reader.map_names()

    subj_id_file = pjoin(project_dir, 'data/HCP_face-avg/s2/subject_id')
    with open(subj_id_file) as rf:
        subj_ids = rf.read().splitlines()
    names_1080 = [_ + '_MyelinMap' for _ in subj_ids]

    indices = []
    for name in names_1080:
        if name in names:
            indices.append(names.index(name))

    data_1080 = data[indices]

    # output
    save2cifti(
        pjoin(
            project_dir,
            'data/HCP_face-avg/S1200_1080_MyelinMap_BC_MSMAll_32k_fs_LR.dscalar.nii'