def _on_select(self, xmin, xmax): wvln = self._ui['textbox'].text().strip() if wvln == '': self._ui['textbox'].setText('Error: please enter a wavelength value before selecting') return wave_val = float(wvln) # if line_list specified, find closest line from list: if self.line_list is not None: absdiff = np.abs(self.line_list - wave_val) idx = absdiff.argmin() if absdiff[idx] > 1.: logger.error("Couldn't find precise line corresponding to " "input {:.3f}".format(wave_val)) return logger.info("Snapping input wavelength {:.3f} to line list " "value {:.3f}".format(wave_val, self.line_list[idx])) wave_val = self.line_list[idx] self._done_wavel_idx.append(idx) # line_props, line_cov = self.get_line_props(xmin, xmax) line_props,_ = self.get_line_props(xmin, xmax) if line_props is None: return self.draw_line_marker(line_props, wave_val, xmin, xmax) self.fig.suptitle('') plt.draw() self.fig.canvas.draw() self._map_dict['wavel'].append(wave_val) self._map_dict['pixel'].append(line_props['x0'])
def main(proc_path, overwrite=False): """ """ proc_path = path.realpath(path.expanduser(proc_path)) if not path.exists(proc_path): raise IOError("Path '{}' doesn't exist".format(proc_path)) if path.isdir(proc_path): data_file = None logger.info("Reading data from path: {}".format(proc_path)) elif path.isfile(proc_path): data_file = proc_path base_path, name = path.split(proc_path) proc_path = base_path logger.info("Reading file: {}".format(data_file)) else: raise RuntimeError("how?!") # file to keep track of RV measurements rv_file = path.join(proc_path, 'rvs.ecsv') if path.exists(rv_file): rv_tbl = Table.read(rv_file, format='ecsv') else: rv_tbl = None # ======================== # Compute wavelength grids # ======================== if data_file is not None: # filename passed - only operate on that solve_radial_velocity(data_file, coef, done_list=None, plot=True) else: # a path was passed - operate on all 1D extracted files proc_ic = GlobImageFileCollection(proc_path, glob_include='1d_proc_*') logger.info("{} 1D extracted spectra found".format(len(proc_ic.files))) logger.info("Beginning wavelength calibration...") for base_fname in proc_ic.files_filtered(imagetyp='OBJECT'): fname = path.join(proc_ic.location, base_fname) solve_radial_velocity(fname)
def main(db_path, run_root_path, drop_all=False, overwrite=False, **kwargs): # Make sure the specified paths actually exist db_path = path.abspath(db_path) run_root_path = path.abspath(run_root_path) for path_ in [path.dirname(db_path), run_root_path]: if not path.exists(path_): raise ValueError("Path '{0}' doesn't exist!".format(path_)) # -------------------------------------------------------------------------- # These are relative paths, so the script needs to be run from the # scripts path... # ID table for mapping group index to TGAS row ID_tbl = Table.read('../data/star_identifier.csv') # TGAS table logger.debug("Loading TGAS data...") tgas = Table.read('../../gaia-comoving-stars/data/stacked_tgas.fits') # Catalog of velocities for Bensby's HIP stars: bensby = Table.read('../data/bensbyrv_bestunique.csv') # -------------------------------------------------------------------------- # connect to the database engine = db_connect(db_path, ensure_db_exists=True) # engine.echo = True logger.debug("Connected to database at '{}'".format(db_path)) if drop_all: # remove all tables and replace Base.metadata.drop_all() Base.metadata.create_all() # create a new session for interacting with the database session = Session() logger.debug("Loading SpectralLineInfo table") line_info = OrderedDict() # air wavelength of Halpha -- wavelength calibration from comp lamp is done # at air wavelengths, so this is where Halpha should be, right? line_info['Halpha'] = 6562.8*u.angstrom # [OI] emission lines -- wavelengths from: # http://physics.nist.gov/PhysRefData/ASD/lines_form.html line_info['[OI] 5577'] = 5577.3387*u.angstrom line_info['[OI] 6300'] = 6300.304*u.angstrom line_info['[OI] 6364'] = 6363.776*u.angstrom for name, wvln in line_info.items(): n = session.query(SpectralLineInfo).filter(SpectralLineInfo.name == name).count() if n == 0: logger.debug('Loading line {0} at {1}'.format(name, wvln)) line = SpectralLineInfo(name=name, wavelength=wvln) session.add(line) session.commit() else: logger.debug('Line {0} already loaded'.format(name)) # Create an entry for this observing run data_path, run_name = path.split(run_root_path) logger.info("Path to night paths: {0}".format(data_path)) n = session.query(Run).filter(Run.name == run_name).count() if n == 0: logger.debug('Adding run {0} to database'.format(run_name)) run = Run(name=run_name) session.add(run) session.commit() elif n == 1: logger.debug('Loading run from database'.format(run_name)) run = session.query(Run).filter(Run.name == run_name).limit(1).one() else: raise RuntimeError("F**k.") # Now we need to go through each processed night of data and load all of the # relevant observations of sources. # First we get the column names for the Observation and TGASSource tables obs_columns = [str(c).split('.')[1] for c in Observation.__table__.columns] tgassource_columns = [str(c).split('.')[1] for c in TGASSource.__table__.columns] # Here's where there's a bit of hard-coded bewitchery - the nights (within # each run) have to be labeled 'n1', 'n2', and etc. Sorry. glob_pattr_proc = path.join(data_path, 'processed', run_name, 'n?') for proc_night_path in glob.glob(glob_pattr_proc): night = path.basename(proc_night_path) night_id = int(night[1]) logger.debug('Loading night {0}...'.format(night_id)) observations = [] tgas_sources = [] prior_rvs = [] glob_pattr_1d = path.join(proc_night_path, '1d_*.fit') for path_1d in ProgressBar(glob.glob(glob_pattr_1d)): hdr = fits.getheader(path_1d) # skip all except OBJECT observations if hdr['IMAGETYP'] != 'OBJECT': continue basename = path.basename(path_1d)[3:] logger.log(1, 'loading row for {0}'.format(basename)) kw = dict() # construct filenames using hard-coded bullshit kw['filename_raw'] = basename kw['filename_p'] = 'p_' + basename kw['filename_1d'] = '1d_' + basename # check if this filename is already in the database, if so, drop it base_query = session.query(Observation)\ .filter(Observation.filename_raw == kw['filename_raw']) already_loaded = base_query.count() > 0 if already_loaded and overwrite: base_query.delete() session.commit() elif already_loaded: logger.debug('Object {0} [{1}] already loaded' .format(hdr['OBJECT'], path.basename(kw['filename_raw']))) continue # read in header of 1d file and store keywords that exist as columns kw.update(fits_header_to_cols(hdr, obs_columns)) # HACK: skip empty object name if len(str(hdr['OBJECT'])) == 0: logger.warning('SKIPPING - empty OBJECT key') continue # get group id from object name if '-' in str(hdr['OBJECT']): # Per APW and SMOH's convention split_name = hdr['OBJECT'].split('-') kw['group_id'] = int(split_name[0]) # because: reasons if kw['group_id'] == 10: tgas_row_idx = int(split_name[1]) else: smoh_idx = int(split_name[1]) tgas_row_idx = ID_tbl[smoh_idx]['tgas_row'] tgas_row = tgas[tgas_row_idx] # query Simbad to get all possible names for this target if tgas_row['hip'] > 0: object_name = 'HIP{0}'.format(tgas_row['hip']) else: object_name = 'TYC {0}'.format(tgas_row['tycho2_id']) logger.log(1, 'common name: {0}'.format(object_name)) try: all_ids = Simbad.query_objectids(object_name)['ID'].astype(str) except Exception as e: logger.warning('Simbad query_objectids failed for "{0}" ' 'with error: {1}' .format(object_name, str(e))) all_ids = [] logger.log(1, 'this is a group object') if len(all_ids) > 0: logger.log(1, 'other names for this object: {0}' .format(', '.join(all_ids))) else: logger.log(1, 'simbad names for this object could not be ' 'retrieved') elif (isinstance(hdr['OBJECT'], int) or str(hdr['OBJECT']).startswith('k') or hdr['OBJECT'][0].isdigit()): # Assume it's a KIC number - per Ruth and Dan's convention if isinstance(hdr['OBJECT'], int): object_name = 'KIC {0:d}'.format(hdr['OBJECT']) elif hdr['OBJECT'].startswith('k'): object_name = 'KIC {0}'.format(hdr['OBJECT'][1:]) else: object_name = 'KIC {0}'.format(hdr['OBJECT']) # query Simbad to get all possible names for this target logger.log(1, 'common name: {0}'.format(object_name)) try: all_ids = Simbad.query_objectids(object_name)['ID'].astype(str) except Exception as e: logger.warning('Simbad query_objectids failed for "{0}" ' 'with error: {1}' .format(object_name, str(e))) all_ids = [] logger.log(1, 'this is a KIC object') if len(all_ids) > 0: logger.log(1, 'other names for this object: {0}' .format(', '.join(all_ids))) else: logger.log(1, 'simbad names for this object could not be ' 'retrieved') # get the Tycho 2 ID, if it has one hip_id = [id_ for id_ in all_ids if 'HIP' in id_] tyc_id = [id_ for id_ in all_ids if 'TYC' in id_] if hip_id: hip_id = int(hip_id[0].replace('HIP', '').strip()) logger.log(1, 'source has HIP id: {0}'.format(hip_id)) tgas_row_idx = np.where(tgas['hip'] == hip_id)[0] if len(tgas_row_idx) == 0: tgas_row_idx = None else: tgas_row = tgas[tgas_row_idx] elif tyc_id: tyc_id = tyc_id[0].replace('TYC', '').strip() logger.log(1, 'source has tycho 2 id: {0}'.format(tyc_id)) tgas_row_idx = np.where(tgas['tycho2_id'] == tyc_id)[0] if len(tgas_row_idx) == 0: tgas_row_idx = None else: tgas_row = tgas[tgas_row_idx] else: logger.log(1, 'source has no HIP or TYC id.') tgas_row_idx = None # result_table = Simbad.query_object(object_name) else: object_name = hdr['OBJECT'] logger.log(1, 'common name: {0}'.format(object_name)) logger.log(1, 'this is not a group object') # query Simbad to get all possible names for this target try: all_ids = Simbad.query_objectids(object_name)['ID'].astype(str) except Exception as e: logger.warning('SKIPPING: Simbad query_objectids failed for ' '"{0}" with error: {1}' .format(object_name, str(e))) continue # get the Tycho 2 ID, if it has one hip_id = [id_ for id_ in all_ids if 'HIP' in id_] tyc_id = [id_ for id_ in all_ids if 'TYC' in id_] if hip_id: hip_id = int(hip_id[0].replace('HIP', '').strip()) logger.log(1, 'source has HIP id: {0}'.format(hip_id)) tgas_row_idx = np.where(tgas['hip'] == hip_id)[0] if len(tgas_row_idx) == 0: tgas_row_idx = None else: tgas_row = tgas[tgas_row_idx] elif tyc_id: tyc_id = tyc_id[0].replace('TYC', '').strip() logger.log(1, 'source has tycho 2 id: {0}'.format(tyc_id)) tgas_row_idx = np.where(tgas['tycho2_id'] == tyc_id)[0] if len(tgas_row_idx) == 0: tgas_row_idx = None else: tgas_row = tgas[tgas_row_idx] else: logger.log(1, 'source has no tycho 2 id.') tgas_row_idx = None # store relevant names / IDs simbad_info_kw = dict() for id_ in all_ids: if id_.lower().startswith('hd'): simbad_info_kw['hd_id'] = id_[2:] elif id_.lower().startswith('hip'): simbad_info_kw['hip_id'] = id_[3:] elif id_.lower().startswith('tyc'): simbad_info_kw['tyc_id'] = id_[3:] elif id_.lower().startswith('2mass'): simbad_info_kw['twomass_id'] = id_[5:] for k,v in simbad_info_kw.items(): simbad_info_kw[k] = v.strip() simbad_info = SimbadInfo(**simbad_info_kw) # Compute barycenter velocity given coordinates of where the # telescope was pointing and observation time t = Time(hdr['JD'], format='jd', scale='utc') sc = coord.SkyCoord(ra=hdr['RA'], dec=hdr['DEC'], unit=(u.hourangle, u.degree)) kw['v_bary'] = bary_vel_corr(t, sc, location=kitt_peak) obs = Observation(night=night_id, **kw) obs.run = run # Get the TGAS data if the source is in TGAS if tgas_row_idx is not None: logger.log(1, 'TGAS row: {0}'.format(tgas_row_idx)) tgas_kw = dict() tgas_kw['row_index'] = tgas_row_idx for name in tgas.colnames: if name in tgassource_columns: tgas_kw[name] = tgas_row[name] job = Gaia.launch_job(gaia_query.format(tgas_kw['source_id'][0]), dump_to_file=False) res = job.get_results() if len(res) == 0: logger.warning("No 2MASS data found for: {0}" .format(tgas_kw['source_id'])) elif len(res) == 1: tgas_kw['J'] = res['j_m'][0] tgas_kw['J_err'] = res['j_msigcom'][0] tgas_kw['H'] = res['h_m'][0] tgas_kw['H_err'] = res['h_msigcom'][0] tgas_kw['Ks'] = res['ks_m'][0] tgas_kw['Ks_err'] = res['ks_msigcom'][0] tgas_source = TGASSource(**tgas_kw) tgas_sources.append(tgas_source) obs.tgas_source = tgas_source else: logger.log(1, 'TGAS row could not be found.') obs.simbad_info = simbad_info observations.append(obs) # retrieve a previous measurement from the literature result = get_best_rv(obs) if result is not None: rv, rv_err, rv_qual, rv_bibcode, rv_source = result prv = PriorRV(rv=rv*u.km/u.s, err=rv_err*u.km/u.s, qual=rv_qual, bibcode=rv_bibcode, source=rv_source) obs.prior_rv = prv prior_rvs.append(prv) logger.log(1, '-'*68) session.add_all(observations) session.add_all(tgas_sources) session.add_all(prior_rvs) session.commit() # Last thing to do is cross-match with the Bensby catalog to # replace velocities when they are better for sim_info in session.query(SimbadInfo)\ .filter(SimbadInfo.hip_id != None).all(): hip_id = 'HIP' + str(sim_info.hip_id) row = bensby[bensby['OBJECT'] == hip_id] if len(row) > 0: sim_info.rv = row['velValue'] sim_info.rv_qual = row['quality'] sim_info.rv_bibcode = row['bibcode'] session.flush() session.close()
def main(db_path, run_name, data_root_path=None, filename=None, overwrite=False, pool=None): if pool is None: pool = schwimmbad.SerialPool() # connect to the database engine = db_connect(db_path) # engine.echo = True logger.debug("Connected to database at '{}'".format(db_path)) # create a new session for interacting with the database session = Session() root_path, _ = path.split(db_path) if data_root_path is None: data_root_path = root_path plot_path = path.join(root_path, 'plots', run_name) if not path.exists(plot_path): os.makedirs(plot_path, exist_ok=True) # TODO: there might be some bugs here... n_lines = session.query(SpectralLineInfo).count() Halpha = session.query(SpectralLineInfo)\ .filter(SpectralLineInfo.name == 'Halpha').one() OI_lines = session.query(SpectralLineInfo)\ .filter(SpectralLineInfo.name.contains('[OI]')).all() if filename is None: # grab all unfinished sources observations = session.query(Observation).join(Run)\ .filter(Run.name == run_name).all() else: # only process the observation corresponding to this filename observations = session.query(Observation).join(Run)\ .filter(Run.name == run_name)\ .filter(Observation.filename_raw == filename).all() for obs in observations: measurements = session.query(SpectralLineMeasurement)\ .join(Observation)\ .filter(Observation.id == obs.id).all() if len(measurements) == n_lines and not overwrite: logger.debug('All line measurements already complete for object ' '{0} in file {1}'.format(obs.object, obs.filename_raw)) continue # Read the spectrum data and get wavelength solution filebase, _ = path.splitext(obs.filename_1d) filename_1d = obs.path_1d(data_root_path) spec = Table.read(filename_1d) logger.debug('Loaded 1D spectrum for object {0} from file {1}'.format( obs.object, filename_1d)) # Extract region around Halpha x, (flux, ivar) = extract_region( spec['wavelength'], center=Halpha.wavelength.value, width=100, arrs=[spec['source_flux'], spec['source_ivar']]) # We start by doing maximum likelihood estimation to fit the line, then # use the best-fit parameters to initialize an MCMC run. # TODO: need to figure out if it's emission or absorption...for now just # assume absorption absorp_emiss = -1. lf = VoigtLineFitter(x, flux, ivar, absorp_emiss=absorp_emiss) lf.fit() fit_pars = lf.get_gp_mean_pars() if (not lf.success or abs(fit_pars['x0'] - Halpha.wavelength.value) > 16. or # 16 Å = ~700 km/s abs(fit_pars['amp']) < 10): # minimum amplitude - MAGIC NUMBER # TODO: should try again with emission line logger.error('absorption line has tiny amplitude! did ' 'auto-determination of absorption/emission fail?') # TODO: what now? continue fig = lf.plot_fit() fig.savefig(path.join(plot_path, '{}_maxlike.png'.format(filebase)), dpi=256) plt.close(fig) # ---------------------------------------------------------------------- # Run `emcee` instead to sample over GP model parameters: if fit_pars['std_G'] < 1E-2: lf.gp.freeze_parameter('mean:ln_std_G') initial = np.array(lf.gp.get_parameter_vector()) if initial[4] < -10: # TODO: ??? initial[4] = -8. if initial[5] < -10: # TODO: ??? initial[5] = -8. ndim, nwalkers = len(initial), 64 sampler = emcee.EnsembleSampler(nwalkers, ndim, log_probability, pool=pool, args=(lf.gp, flux)) logger.debug("Running burn-in...") p0 = initial + 1e-6 * np.random.randn(nwalkers, ndim) p0, lp, _ = sampler.run_mcmc(p0, 128) logger.debug("Running 2nd burn-in...") sampler.reset() p0 = p0[lp.argmax()] + 1e-3 * np.random.randn(nwalkers, ndim) p0, lp, _ = sampler.run_mcmc(p0, 512) logger.debug("Running production...") sampler.reset() pos, lp, _ = sampler.run_mcmc(p0, 1024) fit_kw = dict() for i, par_name in enumerate(lf.gp.get_parameter_names()): if 'kernel' in par_name: continue # remove 'mean:' par_name = par_name[5:] # skip bg if par_name.startswith('bg'): continue samples = sampler.flatchain[:, i] if par_name.startswith('ln_'): par_name = par_name[3:] samples = np.exp(samples) MAD = np.median(np.abs(samples - np.median(samples))) fit_kw[par_name] = np.median(samples) fit_kw[par_name + '_error'] = 1.5 * MAD # convert to ~stddev # remove all previous line measurements q = session.query(SpectralLineMeasurement).join(Observation)\ .filter(Observation.id == obs.id) if q.count() > 0: for meas in q.all(): session.delete(meas) session.commit() slm = SpectralLineMeasurement(**fit_kw) slm.info = Halpha slm.observation = obs session.add(slm) session.commit() # -------------------------------------------------------------------- # plot MCMC traces fig, axes = plt.subplots(2, 4, figsize=(18, 6)) for i in range(sampler.dim): for walker in sampler.chain[..., i]: axes.flat[i].plot(walker, marker='', drawstyle='steps-mid', alpha=0.2) axes.flat[i].set_title(lf.gp.get_parameter_names()[i], fontsize=12) fig.tight_layout() fig.savefig(path.join(plot_path, '{}_mcmc_trace.png'.format(filebase)), dpi=256) plt.close(fig) # -------------------------------------------------------------------- # -------------------------------------------------------------------- # plot samples fig, axes = plt.subplots(3, 1, figsize=(10, 10), sharex=True) samples = sampler.flatchain for s in samples[np.random.randint(len(samples), size=32)]: lf.gp.set_parameter_vector(s) lf.plot_fit(axes=axes, fit_alpha=0.2) fig.tight_layout() fig.savefig(path.join(plot_path, '{}_mcmc_fits.png'.format(filebase)), dpi=256) plt.close(fig) # -------------------------------------------------------------------- # -------------------------------------------------------------------- # corner plot fig = corner.corner( sampler.flatchain[::10, :], labels=[x.split(':')[1] for x in lf.gp.get_parameter_names()]) fig.savefig(path.join(plot_path, '{}_corner.png'.format(filebase)), dpi=256) plt.close(fig) # -------------------------------------------------------------------- # compute centroids for sky lines sky_centroids = [] for j, sky_line in enumerate(OI_lines): wvln = sky_line.wavelength.value x, (flux, ivar) = extract_region( spec['wavelength'], center=wvln, width=32., # angstroms arrs=[spec['background_flux'], spec['background_ivar']]) lf = GaussianLineFitter(x, flux, ivar, absorp_emiss=1.) # all emission lines try: lf.fit() fit_pars = lf.get_gp_mean_pars() except Exception as e: logger.warn("Failed to fit sky line {0}:\n{1}".format( sky_line, e)) lf.success = False fit_pars = lf.get_init() # OMG this is the biggest effing hack fit_pars['amp'] = 0. fit_pars['bg_coef'] = None fit_pars['x0'] = 0. # HACK: hackish signal-to-noise max_ = fit_pars['amp'] / np.sqrt(2 * np.pi * fit_pars['std']**2) SNR = max_ / np.median(1 / np.sqrt(ivar)) if (not lf.success or abs(fit_pars['x0'] - wvln) > 4 or fit_pars['amp'] < 10 or fit_pars['std'] > 4 or SNR < 2.5): # failed x0 = np.nan * u.angstrom title = 'f****d' fit_pars['amp'] = 0. else: x0 = fit_pars['x0'] * u.angstrom title = '{:.2f}'.format(fit_pars['amp']) if lf.success: fig = lf.plot_fit() fig.suptitle(title, y=0.95) fig.subplots_adjust(top=0.8) fig.savefig(path.join( plot_path, '{}_maxlike_sky_{:.0f}.png'.format(filebase, wvln)), dpi=256) plt.close(fig) # store the sky line measurements fit_pars['std_G'] = fit_pars.pop('std') # HACK fit_pars.pop('bg_coef') # HACK slm = SpectralLineMeasurement(**fit_pars) slm.info = sky_line slm.observation = obs session.add(slm) session.commit() sky_centroids.append(x0) sky_centroids = u.Quantity(sky_centroids) logger.info('{} [{}]: x0={x0:.3f} σ={err:.3f}\n--------'.format( obs.object, filebase, x0=fit_kw['x0'], err=fit_kw['x0_error'])) session.commit() pool.close()
args = parser.parse_args() # Set logger level based on verbose flags if args.verbosity != 0: if args.verbosity == 1: logger.setLevel(logging.DEBUG) else: # anything >= 2 logger.setLevel(1) elif args.quietness != 0: if args.quietness == 1: logger.setLevel(logging.WARNING) else: # anything >= 2 logger.setLevel(logging.ERROR) else: # default logger.setLevel(logging.INFO) if args.seed is not None: np.random.seed(args.seed) pool = choose_pool(mpi=args.mpi, processes=args.n_cores) logger.info("Using pool: {}".format(pool.__class__)) main(db_path=args.db_path, data_root_path=args.data_root_path, run_name=args.run_name, filename=args.filename, overwrite=args.overwrite, pool=pool)
def main(night_path, skip_list_file, mask_file, overwrite=False, plot=False): """ See argparse block at bottom of script for description of parameters. """ night_path = path.realpath(path.expanduser(night_path)) if not path.exists(night_path): raise IOError("Path '{}' doesn't exist".format(night_path)) logger.info("Reading data from path: {}".format(night_path)) base_path, night_name = path.split(night_path) data_path, run_name = path.split(base_path) output_path = path.realpath( path.join(data_path, 'processed', run_name, night_name)) os.makedirs(output_path, exist_ok=True) logger.info("Saving processed files to path: {}".format(output_path)) if plot: # if we're making plots plot_path = path.realpath(path.join(output_path, 'plots')) logger.debug("Will make and save plots to: {}".format(plot_path)) os.makedirs(plot_path, exist_ok=True) else: plot_path = None # check for files to skip (e.g., saturated or errored exposures) if skip_list_file is not None: # a file containing a list of filenames to skip with open(skip_list_file, 'r') as f: skip_list = [x.strip() for x in f if x.strip()] else: skip_list = None # look for pixel mask file if mask_file is not None: with open( mask_file, 'r' ) as f: # load YAML file specifying pixel masks for nearby sources pixel_mask_spec = yaml.load(f.read()) else: pixel_mask_spec = None # generate the raw image file collection to process ic = GlobImageFileCollection(night_path, skip_filenames=skip_list) logger.info("Frames to process:") logger.info("- Bias frames: {}".format( len(ic.files_filtered(imagetyp='BIAS')))) logger.info("- Flat frames: {}".format( len(ic.files_filtered(imagetyp='FLAT')))) logger.info("- Comparison lamp frames: {}".format( len(ic.files_filtered(imagetyp='COMP')))) logger.info("- Object frames: {}".format( len(ic.files_filtered(imagetyp='OBJECT')))) # HACK: ic = GlobImageFileCollection(night_path, skip_filenames=skip_list) # ============================ # Create the master bias frame # ============================ # overscan region of the CCD, using FITS index notation oscan_fits_section = "[{}:{},:]".format(oscan_idx, oscan_idx + oscan_size) master_bias_file = path.join(output_path, 'master_bias.fits') if not os.path.exists(master_bias_file) or overwrite: # get list of overscan-subtracted bias frames as 2D image arrays bias_list = [] for hdu, fname in ic.hdus(return_fname=True, imagetyp='BIAS'): logger.debug('Processing Bias frame: {0}'.format(fname)) ccd = CCDData.read(path.join(ic.location, fname), unit='adu') ccd = ccdproc.gain_correct(ccd, gain=ccd_gain) ccd = ccdproc.subtract_overscan(ccd, overscan=ccd[:, oscan_idx:]) ccd = ccdproc.trim_image(ccd, fits_section="[1:{},:]".format(oscan_idx)) bias_list.append(ccd) # combine all bias frames into a master bias frame logger.info("Creating master bias frame") master_bias = ccdproc.combine(bias_list, method='average', clip_extrema=True, nlow=1, nhigh=1, error=True) master_bias.write(master_bias_file, overwrite=True) else: logger.info("Master bias frame file already exists: {}".format( master_bias_file)) master_bias = CCDData.read(master_bias_file) if plot: # TODO: this assumes vertical CCD assert master_bias.shape[0] > master_bias.shape[1] aspect_ratio = master_bias.shape[1] / master_bias.shape[0] fig, ax = plt.subplots(1, 1, figsize=(10, 12 * aspect_ratio)) vmin, vmax = zscaler.get_limits(master_bias.data) cs = ax.imshow(master_bias.data.T, origin='bottom', cmap=cmap, vmin=max(0, vmin), vmax=vmax) ax.set_title('master bias frame [zscale]') fig.colorbar(cs) fig.tight_layout() fig.savefig(path.join(plot_path, 'master_bias.png')) plt.close(fig) # ============================ # Create the master flat field # ============================ # HACK: ic = GlobImageFileCollection(night_path, skip_filenames=skip_list) master_flat_file = path.join(output_path, 'master_flat.fits') if not os.path.exists(master_flat_file) or overwrite: # create a list of flat frames flat_list = [] for hdu, fname in ic.hdus(return_fname=True, imagetyp='FLAT'): logger.debug('Processing Flat frame: {0}'.format(fname)) ccd = CCDData.read(path.join(ic.location, fname), unit='adu') ccd = ccdproc.gain_correct(ccd, gain=ccd_gain) ccd = ccdproc.ccd_process(ccd, oscan=oscan_fits_section, trim="[1:{},:]".format(oscan_idx), master_bias=master_bias) flat_list.append(ccd) # combine into a single master flat - use 3*sigma sigma-clipping logger.info("Creating master flat frame") master_flat = ccdproc.combine(flat_list, method='average', sigma_clip=True, low_thresh=3, high_thresh=3) master_flat.write(master_flat_file, overwrite=True) # TODO: make plot if requested? else: logger.info("Master flat frame file already exists: {}".format( master_flat_file)) master_flat = CCDData.read(master_flat_file) if plot: # TODO: this assumes vertical CCD assert master_flat.shape[0] > master_flat.shape[1] aspect_ratio = master_flat.shape[1] / master_flat.shape[0] fig, ax = plt.subplots(1, 1, figsize=(10, 12 * aspect_ratio)) vmin, vmax = zscaler.get_limits(master_flat.data) cs = ax.imshow(master_flat.data.T, origin='bottom', cmap=cmap, vmin=max(0, vmin), vmax=vmax) ax.set_title('master flat frame [zscale]') fig.colorbar(cs) fig.tight_layout() fig.savefig(path.join(plot_path, 'master_flat.png')) plt.close(fig) # ===================== # Process object frames # ===================== # HACK: ic = GlobImageFileCollection(night_path, skip_filenames=skip_list) logger.info("Beginning object frame processing...") for hdu, fname in ic.hdus(return_fname=True, imagetyp='OBJECT'): new_fname = path.join(output_path, 'p_{}'.format(fname)) # ------------------------------------------- # First do the simple processing of the frame # ------------------------------------------- logger.debug("Processing '{}' [{}]".format(hdu.header['OBJECT'], fname)) if path.exists(new_fname) and not overwrite: logger.log(1, "\tAlready processed! {}".format(new_fname)) ext = SourceCCDExtractor(filename=path.join( ic.location, new_fname), plot_path=plot_path, zscaler=zscaler, cmap=cmap, **ccd_props) nccd = ext.ccd # HACK: F**K this is a bad hack ext._filename_base = ext._filename_base[2:] else: # process the frame! ext = SourceCCDExtractor(filename=path.join(ic.location, fname), plot_path=plot_path, zscaler=zscaler, cmap=cmap, unit='adu', **ccd_props) _pix_mask = pixel_mask_spec.get( fname, None) if pixel_mask_spec is not None else None nccd = ext.process_raw_frame(pixel_mask_spec=_pix_mask, master_bias=master_bias, master_flat=master_flat) nccd.write(new_fname, overwrite=overwrite) # ------------------------------------------- # Now do the 1D extraction # ------------------------------------------- fname_1d = path.join(output_path, '1d_{0}'.format(fname)) if path.exists(fname_1d) and not overwrite: logger.log(1, "\tAlready extracted! {}".format(fname_1d)) continue else: logger.debug("\tExtracting to 1D") # first step is to fit a voigt profile to a middle-ish row to determine LSF lsf_p = ext.get_lsf_pars() # MAGIC NUMBER try: tbl = ext.extract_1d(lsf_p) except Exception as e: logger.error('Failed! {}: {}'.format(e.__class__.__name__, str(e))) continue hdu0 = fits.PrimaryHDU(header=nccd.header) hdu1 = fits.table_to_hdu(tbl) hdulist = fits.HDUList([hdu0, hdu1]) hdulist.writeto(fname_1d, overwrite=overwrite) del ext # ============================== # Process comparison lamp frames # ============================== # HACK: ic = GlobImageFileCollection(night_path, skip_filenames=skip_list) logger.info("Beginning comp. lamp frame processing...") for hdu, fname in ic.hdus(return_fname=True, imagetyp='COMP'): new_fname = path.join(output_path, 'p_{}'.format(fname)) logger.debug("\tProcessing '{}'".format(hdu.header['OBJECT'])) if path.exists(new_fname) and not overwrite: logger.log(1, "\tAlready processed! {}".format(new_fname)) ext = CompCCDExtractor(filename=path.join(ic.location, new_fname), plot_path=plot_path, zscaler=zscaler, cmap=cmap, **ccd_props) nccd = ext.ccd # HACK: F**K this is a bad hack ext._filename_base = ext._filename_base[2:] else: # process the frame! ext = CompCCDExtractor(filename=path.join(ic.location, fname), plot_path=plot_path, unit='adu', **ccd_props) _pix_mask = pixel_mask_spec.get( fname, None) if pixel_mask_spec is not None else None nccd = ext.process_raw_frame( pixel_mask_spec=_pix_mask, master_bias=master_bias, master_flat=master_flat, ) nccd.write(new_fname, overwrite=overwrite) # ------------------------------------------- # Now do the 1D extraction # ------------------------------------------- fname_1d = path.join(output_path, '1d_{0}'.format(fname)) if path.exists(fname_1d) and not overwrite: logger.log(1, "\tAlready extracted! {}".format(fname_1d)) continue else: logger.debug("\tExtracting to 1D") try: tbl = ext.extract_1d() except Exception as e: logger.error('Failed! {}: {}'.format(e.__class__.__name__, str(e))) continue hdu0 = fits.PrimaryHDU(header=nccd.header) hdu1 = fits.table_to_hdu(tbl) hdulist = fits.HDUList([hdu0, hdu1]) hdulist.writeto(fname_1d, overwrite=overwrite)
def main(proc_path, init_file, linelist_file, overwrite=False): """ """ proc_path = path.realpath(path.expanduser(proc_path)) if not path.exists(proc_path): raise IOError("Path '{}' doesn't exist".format(proc_path)) # read linelist if specified if linelist_file is not None: line_list = np.genfromtxt(linelist_file, usecols=[0], dtype=float) else: line_list = None if path.isdir(proc_path): wavelength_data_file = None output_path = path.abspath(path.join(proc_path, '..')) logger.info("Reading data from path: {}".format(proc_path)) elif path.isfile(proc_path): wavelength_data_file = proc_path base_path, name = path.split(proc_path) output_path = path.abspath(path.join(base_path, '..')) logger.info("Reading from file: {}".format(proc_path)) else: raise RuntimeError("how?!") logger.info("Saving processed files to path: {}".format(output_path)) if wavelength_data_file is None: # find a COMP lamp: ic = GlobImageFileCollection(proc_path, glob_include='1d_*') hdu = None for hdu,wavelength_data_file in ic.hdus(return_fname=True, imagetyp='COMP'): break else: raise IOError("No COMP lamp file found in {}".format(proc_path)) wavelength_data_file = path.join(ic.location, wavelength_data_file) logger.info("Using file: {}".format(wavelength_data_file)) if init_file is not None: logger.info("Using initial guess at pixel-to-wavelength mapping from " "initialization file: {}".format(init_file)) d = np.genfromtxt(init_file, names=True, delimiter=',') init_map = dict() init_map['pixel'] = d['pixel'] init_map['wavelength'] = d['wavelength'] else: init_map = None # read 1D extracted comp lamp spectrum tbl = Table.read(wavelength_data_file) gui = GUIWavelengthSolver(tbl['pix'], tbl['flux'], flux_ivar=tbl['ivar'], line_list=line_list, init_map=init_map) wav = gui.solution['wavelength'] pix = gui.solution['pixel'] # write the pixel-wavelength nodes out to file with open(path.join(output_path, 'wavelength_guess.csv'), 'w') as f: txt = ["# wavelength, pixel"] for row in zip(wav, pix): txt.append("{:.5f},{:.5f}".format(*row)) f.write("\n".join(txt))
def main(): # TODO: bad, hard-coded... # base_path = '/Volumes/ProjectData/gaia-comoving-followup/' base_path = '../../data/' db_path = path.join(base_path, 'db.sqlite') engine = db_connect(db_path) session = Session() chain_path = path.abspath('./isochrone_chains') os.makedirs(chain_path, exist_ok=True) # Check out the bottom of "Color-magnitude diagram.ipynb": interesting_group_ids = [1500, 1229, 1515] all_photometry = OrderedDict([ ('1500-8455', OrderedDict([('J', (6.8379998, 0.021)), ('H', (6.4640002, 0.017000001)), ('K', (6.3369999, 0.017999999)), ('W1', (6.2950001, 0.093000002)), ('W2', (6.2490001, 0.026000001)), ('W3', (6.3330002, 0.015)), ('B', (9.5950003, 0.022)), ('V', (8.5120001, 0.014))])), ('1500-1804', OrderedDict([('J', (6.9039998, 0.041000001)), ('H', (6.8559999, 0.027000001)), ('K', (6.7989998, 0.017000001)), ('W1', (6.803, 0.064999998)), ('W2', (6.7600002, 0.018999999)), ('W3', (6.8270001, 0.016000001)), ('B', (7.4980001, 0.015)), ('V', (7.289, 0.011))])), ('1229-1366', OrderedDict([('J', (6.7290001, 0.024)), ('H', (6.2449999, 0.02)), ('K', (6.1529999, 0.023)), ('W1', (6.1799998, 0.096000001)), ('W2', (6.04, 0.035)), ('W3', (6.132, 0.016000001)), ('B', (9.5539999, 0.021)), ('V', (8.4619999, 0.014))])), ('1229-7470', OrderedDict([ ('J', (9.1709995, 0.024)), ('H', (8.7959995, 0.026000001)), ('K', (8.7299995, 0.022)), ('W1', (8.6669998, 0.023)), ('W2', (8.7189999, 0.02)), ('W3', (8.6680002, 0.025)), ('B', (11.428, 0.054000001)), ('V', (10.614, 0.039999999)) ])), ('1515-3584', OrderedDict([('J', (5.363999843597412, 0.024000000208616257)), ('H', (4.965000152587891, 0.035999998450279236)), ('K', (4.815999984741211, 0.032999999821186066)), ('W1', (4.758, 0.215)), ('W2', (4.565, 0.115)), ('W3', (4.771, 0.015)), ('B', (8.347999572753906, 0.01600000075995922)), ('V', (7.182000160217285, 0.009999999776482582))])), ('1515-1834', OrderedDict([('J', (8.855999946594238, 0.024000000208616257)), ('H', (8.29699993133545, 0.020999999716877937)), ('K', (8.178999900817871, 0.017999999225139618)), ('W1', (8.117, 0.022)), ('W2', (8.15, 0.019)), ('W3', (8.065, 0.02)), ('B', (12.309000015258789, 0.11999999731779099)), ('V', (11.069999694824219, 0.054999999701976776))])) ]) for k in all_photometry: samples_file = path.join(chain_path, '{0}.hdf5'.format(k)) if path.exists(samples_file): logger.info("skipping {0} - samples exist at {1}".format( k, samples_file)) continue phot = all_photometry[k] obs = session.query(Observation).filter(Observation.object == k).one() plx = (obs.tgas_source.parallax, obs.tgas_source.parallax_error) # fit an isochrone model = StarModel(iso, use_emcee=True, parallax=plx, **phot) model.set_bounds(mass=(0.01, 20), feh=(-1, 1), distance=(0, 300), AV=(0, 1)) # initial conditions for emcee walkers nwalkers = 128 p0 = [] m0, age0, feh0 = model.ic.random_points(nwalkers, minmass=0.01, maxmass=10., minfeh=-1, maxfeh=1) _, max_distance = model.bounds('distance') _, max_AV = model.bounds('AV') d0 = 10**(np.random.uniform(0, np.log10(max_distance), size=nwalkers)) AV0 = np.random.uniform(0, max_AV, size=nwalkers) p0 += [m0] p0 += [age0, feh0, d0, AV0] p0 = np.array(p0).T npars = p0.shape[1] # run emcee ninit = 256 nburn = 1024 niter = 4096 logger.debug('Running emcee - initial sampling...') sampler = emcee.EnsembleSampler(nwalkers, npars, model.lnpost) # pos, prob, state = sampler.run_mcmc(p0, ninit) for pos, prob, state in tqdm(sampler.sample(p0, iterations=ninit), total=ninit): pass # cull the weak walkers best_ix = sampler.flatlnprobability.argmax() best_p0 = (sampler.flatchain[best_ix][None] + np.random.normal(0, 1E-5, size=(nwalkers, npars))) sampler.reset() logger.debug('burn-in...') for pos, prob, state in tqdm(sampler.sample(best_p0, iterations=nburn), total=nburn): pass # pos,_,_ = sampler.run_mcmc(best_p0, nburn) sampler.reset() logger.debug('sampling...') # _ = sampler.run_mcmc(pos, niter) for pos, prob, state in tqdm(sampler.sample(pos, iterations=niter), total=niter): pass model._sampler = sampler model._make_samples(0.08) model.samples.to_hdf(samples_file, key='samples') # np.save('isochrone_chains/chain.npy', sampler.chain) logger.debug('...done and saved!')
def main(night_path, wavelength_gp_path=None, comp_lamp_path=None, overwrite=False): night_path = path.realpath(path.expanduser(night_path)) if not path.exists(night_path): raise IOError("Path '{}' doesn't exist".format(night_path)) if path.isdir(night_path): data_file = None logger.info("Reading data from path: {}".format(night_path)) elif path.isfile(night_path): data_file = night_path base_path, name = path.split(night_path) night_path = base_path logger.info("Reading file: {}".format(data_file)) else: raise RuntimeError("how?!") plot_path = path.join(night_path, 'plots') # =========================== # GP model does not exist yet # =========================== if wavelength_gp_path is None: # filename to save the GP model wavelength_gp_path = path.join(night_path, 'wavelength_GP_model.pickle') # see if a wavelength GP model file already exists if path.exists(wavelength_gp_path) and not overwrite: logger.info('Loading wavelength GP model from {}'.format( wavelength_gp_path)) # GP model already exists -- just load it with open(wavelength_gp_path, 'rb') as f: model = pickle.load(f) else: logger.info('Generating wavelength GP model, saving to {}'.format( wavelength_gp_path)) if comp_lamp_path is None: ic = GlobImageFileCollection(night_path, glob_include='1d_*') hdu = None for hdu, wavelength_data_file in ic.hdus(return_fname=True, imagetyp='COMP'): break else: raise IOError( "No COMP lamp file found in {}".format(night_path)) comp_lamp_path = path.join(ic.location, wavelength_data_file) logger.info( "No comp. lamp spectrum file specified - using: {}".format( comp_lamp_path)) model = generate_wavelength_model(comp_lamp_path, night_path, plot_path) # pickle the model with open(wavelength_gp_path, 'wb') as f: pickle.dump(model, f) # ======================================= # GP model already exists -- just load it # ======================================= else: logger.info( 'Loading wavelength GP model from {}'.format(wavelength_gp_path)) with open(wavelength_gp_path, 'rb') as f: model = pickle.load(f) # ======================== # Compute wavelength grids # ======================== # set the wavelength grid to NaN when the root-variance of the prediction is # larger than this tolerance std_tol = 1. * u.angstrom if data_file is not None: # filename passed - only operate on that add_wavelength(data_file, model, overwrite=overwrite, std_tol=std_tol, plot_path=plot_path) else: # a path was passed - operate on all 1D extracted files proc_ic = GlobImageFileCollection(night_path, glob_include='1d_*') logger.info("{} 1D extracted spectra found".format(len(proc_ic.files))) logger.info("Beginning wavelength calibration...") for base_fname in proc_ic.files_filtered(imagetyp='OBJECT'): fname = path.join(proc_ic.location, base_fname) add_wavelength(fname, model, overwrite=overwrite, std_tol=std_tol, plot_path=plot_path)