def data():

	global symbol
	global start
	global end
	global data
	global comp_name

	if request.method=='POST':
		print(request)
		# if symbol != request.form['search']:
		symbol = request.form['search']
		source = request.form['sourcery']
		start = request.form['trip-start']
		end = request.form['trip-end']

		data = gatherer.data(symbol, source, start, end)
		comp_name = company.get_symbol(symbol)
		return render_template("home1.html", key=stripe_keys['publishable_key'])
Exemple #2
0
def data():

    global symbol
    global start
    global end
    global data
    global comp_name

    if request.method == 'POST':
        print(request)
        # if symbol != request.form['search']:
        symbol = request.form['search']
        source = request.form['sourcery']
        start = request.form['trip-start']
        end = request.form['trip-end']

        data = gatherer.data(symbol, source, start, end)
        comp_name = company.get_symbol(symbol)
        return chart1()
def chart3():

    global start
    global end
    global data
    global comp_name
    global symbol
    global pred_Price

    if request.method == 'POST':
        print(request)
        # if symbol != request.form['search']:
        symbol = request.form['search']
        source = request.form['sourcery']
        start = request.form['trip-start']
        end = request.form['trip-end']

        comp_name = company.get_symbol(symbol)

    dt, dd, reg, knn = logica.task2(data)
    #inital setup for model
    df = web.DataReader(name=symbol, data_source='yahoo', start=start, end=end)
    #creating a new dataframe with the close column only
    data = df.filter(['Close'])
    #Converting the dataframe to numpy array
    dataset = data.values
    #Geting the number of 80 percent of data as traning len
    training_data_len = math.ceil(len(dataset) * .8)

    scaler = MinMaxScaler(feature_range=(0, 1))
    scaled_data = scaler.fit_transform(dataset)

    training_data = scaled_data[0:training_data_len]

    x_train = []
    y_train = []

    for i in range(60, len(training_data)):
        x_train.append(training_data[i - 60:i, 0])
        y_train.append(training_data[i, 0])

    x_train, y_train = np.array(x_train), np.array(y_train)

    x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
    #Building the LSTM model
    model = Sequential()
    model.add(
        LSTM(100, return_sequences=True, input_shape=(x_train.shape[1], 1)))
    model.add(LSTM(100, return_sequences=False))
    model.add(Dense(25))
    model.add(Dense(1))
    model.compile(optimizer='adam', loss='mean_squared_error')

    model.fit(x_train, y_train, batch_size=1, epochs=1)

    #predicting the closing price value for APPL comapny for 30 March 2021
    apple_qoute = web.DataReader(name=symbol,
                                 data_source='yahoo',
                                 start=start,
                                 end=end)

    #creating new dataframe
    new_df = apple_qoute.filter(['Close'])

    #get the last 60 days value and then convert into numpy array
    last_60_days = new_df[-60:].values
    #scale the  data between 0 and 1
    last_60_days_scaled = scaler.transform(last_60_days)
    #create and empty list
    X_test = []

    #APPEND THE past 60 days
    X_test.append(last_60_days_scaled)
    #Convert the X_test data set to numpy array
    X_test = np.array(X_test)

    #Reshape the data
    X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))

    #Geting the predicted price
    pred_price = model.predict(X_test)
    pred_price = scaler.inverse_transform(pred_price)
    print("The predicted price for 30th March 2021 :: " + str(pred_price))

    return render_template('chart3.html',
                           stock_date=dt,
                           stock_data=dd,
                           reg=reg,
                           knn=knn,
                           company=comp_name,
                           start=start,
                           end=end,
                           pred_Price=pred_price)