def test_for_nlpnet(self): """ Attempting to use nlpnet. This will cause an error if the required dependencies are not downloaded. """ try: # Creating a new compare object compare_nlpnet = Compare() # Comparing using the nltk parser compare_nlpnet.compare_strings( text=["what time is it here?", "This is the cat's hat"], pattern_detection=False, parser="nlpnet") # If that was successfuly, getting information sentence_information = compare_nlpnet.get_pattern_information() for sentence in sentence_information: my_pattern = "[ Pattern ] : " + sentence.pattern my_subject = "[ Subject ] : " + sentence.subject my_verb = "[ Verb ] : " + sentence.verb my_object = "[ Object ] : " + sentence.object[0] my_preps = "[ Prep Phrases ] : " + str( sentence.prepositional_phrases) my_reliability_score = "[ Reliability Score ]: " + str( sentence.reliability_score) except: # Getting nltk data path running = Popen(['python -c "import nltk;print nltk.data.path"'], stdin=PIPE, stdout=PIPE, stderr=PIPE, shell=True) stdin, stdout = running.communicate() # Setting the path that the nlpnet dependency will be downloaded from path = re.sub( r"\'", "", re.sub(r"\[", '', str(stdin.split('\n')[0].split(',')[0]))) path = path.split(r"/") path = '/'.join(path[0:len(path) - 1]) + '/nlpnet_dependency/' # Download the dependencies & extract current_directory = os.getcwd() os.mkdir(path) os.chdir(path) os.system( "wget http://nilc.icmc.usp.br/nlpnet/data/dependency-en.tgz") tar = tarfile.open(path + 'dependency-en.tgz', 'r:gz') tar.extractall(path) os.remove(path + 'dependency-en.tgz') os.chdir(current_directory)
class regex4dummies: # Setting global version variable which contains the version of this library __version__ = '1.4.6' def __init__(self, **kwargs): """ Constructor method. """ # Testing the system to make sure all dependencies are installed RunDependencyTests() # Instantiating compare object to be used self.compare_object = Compare() def compare_strings(self, **kwargs): """ Function that is integral in communicating between a compare object and the user This function returns a 3-tuple array containing reliability score, applicability score, and pattern """ # Call compare_strings of compare object & return output if kwargs.get("pattern_detection") == "literal": return self.compare_object.compare_strings( text=kwargs.get("text"), pattern_detection=True, parser=kwargs.get("parser")) else: return self.compare_object.compare_strings( text=kwargs.get("text"), pattern_detection=False, parser=kwargs.get("parser")) def get_pattern_information(self): """ This function returns the information for each sentence/pattern that was identified. This is only useful if semantic parsing is implemented; otherwise, {} will be returned. """ return self.compare_object.get_pattern_information() def get_topics(self, **kwargs): """ Returns the list of topics that the parsers identified """ return self.compare_object.get_pattern_topics(kwargs.get("text")) def extract_important_information(self, **kwargs): """ Returns the important information within the given text. """ return self.compare_object.extract_important_information( kwargs.get("text"))
class regex4dummies: # Setting global version variable which contains the version of this library __version__ = '1.4.6' def __init__(self, **kwargs): """ Constructor method. """ # Testing the system to make sure all dependencies are installed RunDependencyTests() # Instantiating compare object to be used self.compare_object = Compare() def compare_strings(self, **kwargs): """ Function that is integral in communicating between a compare object and the user This function returns a 3-tuple array containing reliability score, applicability score, and pattern """ # Call compare_strings of compare object & return output if kwargs.get("pattern_detection") == "literal": return self.compare_object.compare_strings(text=kwargs.get("text"), pattern_detection=True, parser=kwargs.get("parser")) else: return self.compare_object.compare_strings(text=kwargs.get("text"), pattern_detection=False, parser=kwargs.get("parser")) def get_pattern_information( self ): """ This function returns the information for each sentence/pattern that was identified. This is only useful if semantic parsing is implemented; otherwise, {} will be returned. """ return self.compare_object.get_pattern_information() def get_topics(self, **kwargs): """ Returns the list of topics that the parsers identified """ return self.compare_object.get_pattern_topics(kwargs.get("text")) def extract_important_information(self, **kwargs): """ Returns the important information within the given text. """ return self.compare_object.extract_important_information(kwargs.get("text"))
def test_for_nlpnet(self): """ Attempting to use nlpnet. This will cause an error if the required dependencies are not downloaded. """ try: # Creating a new compare object compare_nlpnet = Compare() # Comparing using the nltk parser compare_nlpnet.compare_strings(text=["what time is it here?", "This is the cat's hat"], pattern_detection=False, parser="nlpnet") # If that was successfuly, getting information sentence_information = compare_nlpnet.get_pattern_information() for sentence in sentence_information: my_pattern = "[ Pattern ] : " + sentence.pattern my_subject = "[ Subject ] : " + sentence.subject my_verb = "[ Verb ] : " + sentence.verb my_object = "[ Object ] : " + sentence.object[0] my_preps = "[ Prep Phrases ] : " + str(sentence.prepositional_phrases) my_reliability_score = "[ Reliability Score ]: " + str(sentence.reliability_score) except: # Getting nltk data path running = Popen(['python -c "import nltk;print nltk.data.path"'], stdin=PIPE, stdout=PIPE, stderr=PIPE, shell=True) stdin, stdout = running.communicate() # Setting the path that the nlpnet dependency will be downloaded from path = re.sub(r"\'", "", re.sub(r"\[", '', str(stdin.split('\n')[0].split(',')[0]))) path = path.split(r"/") path = '/'.join(path[0 : len(path) - 1]) + '/nlpnet_dependency/' # Download the dependencies & extract current_directory = os.getcwd() os.mkdir(path) os.chdir(path) os.system("wget http://nilc.icmc.usp.br/nlpnet/data/dependency-en.tgz") tar = tarfile.open(path + 'dependency-en.tgz', 'r:gz') tar.extractall(path) os.remove(path + 'dependency-en.tgz') os.chdir(current_directory)