def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.ComplexConv2d(in_planes,
                            out_planes,
                            kernel_size=1,
                            stride=stride,
                            bias=False)
Exemple #2
0
 def __init__(self, in_channels, out_channels, kernel_size=3, upsampling=1):
     conv2d = nn.ComplexConv2d(in_channels,
                               out_channels,
                               kernel_size=kernel_size,
                               padding=kernel_size // 2)
     upsampling = nn.ComplexUpsamplingBilinear2d(
         scale_factor=upsampling) if upsampling > 1 else nn.Identity()
     activation = nn.ComplexReLU()  # Always
     super().__init__(conv2d, upsampling, activation)
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.ComplexConv2d(in_planes,
                            out_planes,
                            kernel_size=3,
                            stride=stride,
                            padding=dilation,
                            groups=groups,
                            bias=False,
                            dilation=dilation)
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        padding=0,
        stride=1,
        use_batchnorm=True,
    ):

        #         if use_batchnorm == "inplace" and InPlaceABN is None:
        #             raise RuntimeError(
        #                 "In order to use `use_batchnorm='inplace'` inplace_abn package must be installed. "
        #                 + "To install see: https://github.com/mapillary/inplace_abn"
        #             )

        conv = nn.ComplexConv2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            bias=not (use_batchnorm),
        )
        relu = nn.ComplexReLU()

        if use_batchnorm == "inplace":
            #             bn = InPlaceABN(out_channels, activation="leaky_relu", activation_param=0.0)
            #             relu = nn.Identity()
            pass

        elif use_batchnorm and use_batchnorm != "inplace":
            bn = nn.ComplexBatchNorm2d(out_channels)

        else:
            bn = nn.Identity()

        super(Conv2dReLU, self).__init__(conv, bn, relu)
    def __init__(self,
                 block,
                 layers,
                 num_classes=1000,
                 zero_init_residual=False,
                 groups=1,
                 width_per_group=64,
                 replace_stride_with_dilation=None,
                 norm_layer=None):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.ComplexBatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(
                                 replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.ComplexConv2d(3,
                                      self.inplanes,
                                      kernel_size=7,
                                      stride=2,
                                      padding=3,
                                      bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ComplexReLU()
        self.maxpool = nn.ComplexMaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block,
                                       128,
                                       layers[1],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block,
                                       256,
                                       layers[2],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block,
                                       512,
                                       layers[3],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.ComplexAdaptiveAvgPool2d((1, 1))
        self.fc = nn.ComplexLinear(512 * block.expansion, num_classes)

        #DEBUG: Can drop the following if it doesn't work
        for m in self.modules():
            if isinstance(m, nn.ComplexConv2d):
                init.kaiming_normal_(m.conv_r.weight,
                                     mode='fan_out',
                                     nonlinearity='relu')
                init.kaiming_normal_(m.conv_i.weight,
                                     mode='fan_out',
                                     nonlinearity='relu')
            elif isinstance(
                    m, (nn.ComplexBatchNorm2d)
            ):  # , nn.GroupNorm)):  # ComplexGroupNorm not yet implemented
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    init.constant_(m.bn2.weight, 0)