Exemple #1
0
    def __init__(self, in_ch, out_ch):
        super(up, self).__init__()

        self.up = ComplexUpsample(scale_factor=2, mode='bilinear')

        self.conv = nn.Sequential(
            ComplexConv2d(in_ch * 2, in_ch, [3, 3], padding=(1, 1)),
            RadialBatchNorm2d(in_ch), Activation(in_ch),
            ComplexConv2d(in_ch, out_ch, [3, 3], padding=(1, 1)),
            RadialBatchNorm2d(out_ch), Activation(out_ch))
Exemple #2
0
 def __init__(self, in_ch, out_ch):
     super(double_conv, self).__init__()
     self.conv = nn.Sequential(
         ComplexConv2d(in_ch, out_ch, [3, 3], padding=(1, 1)),
         RadialBatchNorm2d(out_ch),
         Activation(out_ch),
         #            ComplexDropout2d(params.dropout_ratio),
         ComplexConv2d(out_ch, out_ch, [3, 3], padding=(1, 1)),
         RadialBatchNorm2d(out_ch),
         Activation(out_ch),
         #            ComplexDropout2d(params.dropout_ratio)
     )
Exemple #3
0
 def __init__(self, in_ch, out_ch, residual_connection=True):
     super(bottleneck, self).__init__()
     self.residual_connection = residual_connection
     self.down_conv = down_conv(in_ch)
     self.double_conv = nn.Sequential(
         #            ComplexDropout2d(params.dropout_ratio),
         ComplexConv2d(in_ch, 2 * in_ch, [3, 3], padding=(1, 1)),
         RadialBatchNorm2d(2 * in_ch),
         Activation(2 * in_ch),
         #            ComplexDropout2d(params.dropout_ratio),
         ComplexConv2d(2 * in_ch, out_ch, [3, 3], padding=(1, 1)),
         RadialBatchNorm2d(out_ch),
         Activation(out_ch))
Exemple #4
0
 def __init__(self, in_ch):
     super(down_conv, self).__init__()
     self.conv = nn.Sequential(
         ComplexConv2d(in_ch, in_ch, [3, 3], stride=(2, 2), padding=(1, 1)),
         RadialBatchNorm2d(in_ch), Activation(in_ch))