def __init__(self, in_ch, out_ch): super(up, self).__init__() self.up = ComplexUpsample(scale_factor=2, mode='bilinear') self.conv = nn.Sequential( ComplexConv2d(in_ch * 2, in_ch, [3, 3], padding=(1, 1)), RadialBatchNorm2d(in_ch), Activation(in_ch), ComplexConv2d(in_ch, out_ch, [3, 3], padding=(1, 1)), RadialBatchNorm2d(out_ch), Activation(out_ch))
def __init__(self, in_ch, out_ch): super(double_conv, self).__init__() self.conv = nn.Sequential( ComplexConv2d(in_ch, out_ch, [3, 3], padding=(1, 1)), RadialBatchNorm2d(out_ch), Activation(out_ch), # ComplexDropout2d(params.dropout_ratio), ComplexConv2d(out_ch, out_ch, [3, 3], padding=(1, 1)), RadialBatchNorm2d(out_ch), Activation(out_ch), # ComplexDropout2d(params.dropout_ratio) )
def __init__(self, in_ch, out_ch, residual_connection=True): super(bottleneck, self).__init__() self.residual_connection = residual_connection self.down_conv = down_conv(in_ch) self.double_conv = nn.Sequential( # ComplexDropout2d(params.dropout_ratio), ComplexConv2d(in_ch, 2 * in_ch, [3, 3], padding=(1, 1)), RadialBatchNorm2d(2 * in_ch), Activation(2 * in_ch), # ComplexDropout2d(params.dropout_ratio), ComplexConv2d(2 * in_ch, out_ch, [3, 3], padding=(1, 1)), RadialBatchNorm2d(out_ch), Activation(out_ch))
def __init__(self, in_ch): super(down_conv, self).__init__() self.conv = nn.Sequential( ComplexConv2d(in_ch, in_ch, [3, 3], stride=(2, 2), padding=(1, 1)), RadialBatchNorm2d(in_ch), Activation(in_ch))