Exemple #1
0
                      },
                      xaxis=xaxis_format)
    return fig


select_prestation_type = dcc.Dropdown(id="select-prestation_type",
                                      options=[{
                                          "label": "Train",
                                          "value": "T"
                                      }, {
                                          "label": "Avion",
                                          "value": "A"
                                      }])

cards = dbc.CardDeck([
    build_card_indicateur("Nombre de trajets", "Nombre de trajets", "2 300"),
    build_card_indicateur("Emissions (eCO2)", "Emissions (eCO2)", "2M"),
    build_card_indicateur("Indicateur X", "Indicateur X", "XX"),
    build_card_indicateur("Indicateur Y", "Indicateur Y", "YY"),
])

layout = html.Div(
    [
        dbc.Row(html.P("", id="values-selected")),
        # Cards row
        dbc.Row([
            dbc.Col([
                dbc.Card(
                    dbc.CardBody([
                        html.H3("Filtres"),
                        html.Br(),
select_travel_year = dbc.Checklist(
    options=ch.year_options, value=[p["value"] for p in ch.year_options], id="select-travel-year", inline=True,
)

select_unreliable = dbc.Checklist(
    options=[{"label": "Inclure les trajets peu fiables", "value": False},],
    value=[True],
    id="select-unreliable",
    switch=True,
)


cards = dbc.CardDeck(
    [
        build_card_indicateur("Émissions (kg eqCO2)", "0", "kpi-emissions"),
        build_card_indicateur("Nombre de trajets", "0", "kpi-trips"),
        build_card_indicateur("Distance totale (km)", "0", "kpi-distance"),
    ]
)

layout = html.Div(
    [
        dbc.Row(
            [
                dbc.Col(
                    [
                        dbc.Jumbotron(
                            [
                                html.P(
                                    "Les émissions des trajets sont obtenues en croisant le facteur d'émission du "
Exemple #3
0
        go.Pie(labels=prestation_df["Entité 3"],
               values=prestation_df["Emissions (g/an)"],
               hole=0.3)
    ])
    fig.update_layout(plot_bgcolor="white",
                      template="plotly_white",
                      margin={
                          "t": 30,
                          "r": 30,
                          "l": 30
                      })
    return fig


cards = dbc.CardDeck([
    build_card_indicateur("Nombre de véhicules", "XX"),
    build_card_indicateur("Emissions (CO2)", "YY"),
    build_card_indicateur("Indicateur X", "XX"),
    build_card_indicateur("Indicateur Y", "YY"),
])

select_odrive_vehicle_type = dcc.Dropdown(
    id="select_odrive_vehicle_type",
    options=[
        {
            "label": "Electrique",
            "value": "E"
        },
        {
            "label": "Essence",
            "value": "F"
Exemple #4
0
    odrive_df = ov.get_structure_data()
    motors = list(set(odrive_df["Motorisation"]))
    options = []
    value = []
    for m in motors:
        if m is not None and m is not np.nan:
            options.append({"label": m, "value": m})
            value.append(m)
    return dcc.Checklist(id="odrive_select_vehicle_type",
                         options=options,
                         value=value,
                         labelStyle={"display": "block"})


cards = dbc.CardDeck([
    build_card_indicateur("Emissions en CO2 par an (kg)", "0",
                          "odrive_total_emissions"),
    build_card_indicateur("Nombre de véhicules", "0",
                          "odrive_fleet_vehicle_number_odrive"),
    build_card_indicateur("Distance parcourue par an (km)", "0",
                          "odrive_kilometers_total"),
    build_card_indicateur("Distance par mois par véhicule (km)", "0",
                          "odrive_montly_kilometer"),
])

layout = html.Div(
    [
        # Cards row
        dbc.Row([
            dbc.Col([
                html.B("", id="selected-odrive-vehicle_type"),
                dbc.Jumbotron([