def __init__(self, pretrained_matrix, embed_size, **modelParams):
        super(HybridIMP, self).__init__()

        self.DataParallel = modelParams[
            'data_parallel'] if 'data_parallel' in modelParams else False

        sigma = 1 if 'init_sigma' not in modelParams else modelParams[
            'init_sigma']
        alpha = 0.1 if 'alpha' not in modelParams else modelParams['alpha']

        self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                      padding_idx=0)
        # self.EmbedNorm = nn.LayerNorm(embed_size)
        self.EmbedDrop = nn.Dropout(modelParams['dropout'])

        hidden_dim = (
            1 + modelParams['bidirectional']) * modelParams['hidden_size']

        # self.Encoder = BiLstmCellEncoder(input_size=embed_size, **modelParams)
        self.Encoder = BiLstmEncoder(input_size=embed_size, **modelParams)

        self.Decoder = CNNEncoder1D([hidden_dim, hidden_dim])

        # TODO: 使用Sigma
        self.Sigma = nn.Parameter(t.FloatTensor([sigma]))
        self.ALPHA = alpha
        self.Dim = hidden_dim
        self.NumClusterSteps = 1 if 'cluster_num_step' not in modelParams else modelParams[
            'cluster_num_step']

        self.Clusters = None
        self.ClusterLabels = None
    def __init__(self,
                 pretrained_matrix,
                 embed_size,
                 hidden=128,
                 layer_num=1,
                 self_attention=False,
                 self_att_dim=64,
                 word_cnt=None):

        super(RelationNet, self).__init__()

        # 可训练的嵌入层
        if pretrained_matrix is not None:
            self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                          freeze=False)
        else:
            self.Embedding = nn.Embedding(word_cnt,
                                          embedding_dim=embed_size,
                                          padding_idx=0)

        self.EmbedNorm = nn.LayerNorm(embed_size)

        self.Encoder = BiLstmEncoder(
            embed_size,  #64
            hidden_size=hidden,
            layer_num=layer_num,
            self_attention=self_attention,
            self_att_dim=self_att_dim,
            useBN=False)

        self.Relation = nn.Sequential()
Exemple #3
0
    def __init__(self,
                 pretrained_matrix,
                 embed_size,
                 ntn_hidden=100,
                 routing_iters=3,
                 word_cnt=None,
                 **modelParams):
        super(InductionNet, self).__init__()

        self.DataParallel = modelParams['data_parallel'] if 'data_parallel' in modelParams else False

        self.Iters = routing_iters

        if pretrained_matrix is not None:
            self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                          padding_idx=0)
        else:
            self.Embedding = nn.Embedding(word_cnt, embedding_dim=embed_size, padding_idx=0)

        self.EmbedDrop = nn.Dropout(modelParams['dropout'])

        self.Encoder = BiLstmEncoder(input_size=embed_size, **modelParams)

        self.MiddleEncoder = None

        hidden_size = (1 + modelParams['bidirectional']) * modelParams['hidden_size']

        self.Decoder = CNNEncoder1D([hidden_size, hidden_size])

        self.Transformer = nn.Linear(hidden_size, hidden_size)

        self.NTN = NTN(hidden_size , hidden_size, ntn_hidden)
Exemple #4
0
    def __init__(self,
                 pretrained_matrix,
                 embed_size,
                 feat_avg='pre',
                 contrastive_factor=None,
                 **modelParams):

        super(AFEAT, self).__init__()

        self.Avg = feat_avg
        self.ContraFac = contrastive_factor
        self.DisTempr = modelParams[
            'temperature'] if 'temperature' in modelParams else 1

        # 可训练的嵌入层
        self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                      freeze=False)
        self.EmbedNorm = nn.LayerNorm(embed_size)

        self.Encoder = BiLstmEncoder(input_size=embed_size, **modelParams)

        self.Decoder = CNNEncoder1D([
            (modelParams['bidirectional'] + 1) * modelParams['hidden_size'],
            (modelParams['bidirectional'] + 1) * modelParams['hidden_size']
        ])

        self.SetFunc = DeepAffine(
            embed_dim=(modelParams['bidirectional'] + 1) *
            modelParams['hidden_size'],
            dropout=modelParams['dropout'])
Exemple #5
0
    def __init__(self, n, pretrained_matrix, embed_size, seq_len, **kwargs):
        super(BaseLearner, self).__init__()
        # 需要adapt的参数名称
        self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                      freeze=False,
                                                      padding_idx=0)
        self.EmbedNorm = nn.LayerNorm(embed_size)
        self.Encoder = BiLstmEncoder(input_size=embed_size,
                                     **kwargs)  #CNNEncoder1D(**kwargs)
        self.Attention = nn.Linear(2 * kwargs['hidden_size'], 1, bias=False)
        # self.Attention = AttnReduction(input_dim=2*kwargs['hidden_size'])

        # out_size = kwargs['hidden_size']
        # self.fc = nn.Linear(seq_len, n)
        self.fc = nn.Linear(kwargs['hidden_size'] * 2, n)
        # 对于双向lstm,输出维度是隐藏层的两倍
        # 对于CNN,输出维度是嵌入维度

        self.adapted_keys = []
        # [
        # # 'Attention.IntAtt.weight',
        # # 'Attention.ExtAtt.weight',
        # 'Attention.weight',
        # 'fc.weight',
        # 'fc.bias']

        self.addAdaptedKeys()
Exemple #6
0
    def __init__(self, n, pretrained_matrix, embed_size, seq_len,
                 **modelParams):
        super(BaseLearner, self).__init__()
        # 需要adapt的参数名称
        self.adapted_keys = [
            # 'Attention.IntAtt.weight',
            # 'Attention.ExtAtt.weight',
            'Attention.weight',
            'fc.weight',
            'fc.bias'
        ]
        self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                      padding_idx=0)
        # self.EmbedNorm = nn.LayerNorm(embed_size)
        self.EmbedDrop = nn.Dropout(modelParams['dropout'])

        self.Encoder = BiLstmEncoder(input_size=embed_size,
                                     **modelParams)  #CNNEncoder1D(**kwargs)
        # self.Encoder = TemporalConvNet(**kwargs)
        directions = 1 + modelParams['bidirectional']

        self.Attention = nn.Linear(directions * modelParams['hidden_size'],
                                   1,
                                   bias=False)
        # self.Attention = nn.Linear(2*kwargs['hidden_size'], 1, bias=False)
        # self.Attention = AttnReduction(input_dim=2*kwargs['hidden_size'])

        # out_size = kwargs['hidden_size']
        # self.fc = nn.Linear(seq_len, n)
        self.fc = nn.Linear(directions * modelParams['hidden_size'], n)
Exemple #7
0
    def __init__(self,
                 pretrained_matrix,
                 embed_size,
                 feat_avg='pre',
                 contrastive_factor=None,
                 **modelParams):

        super(FEAT, self).__init__()

        self.DataParallel = modelParams[
            'data_parallel'] if 'data_parallel' in modelParams else False

        self.Avg = feat_avg
        self.ContraFac = contrastive_factor
        self.DisTempr = modelParams[
            'temperature'] if 'temperature' in modelParams else 1

        # self.Encoder = FastTextEncoder(pretrained_matrix,
        #                                embed_size,
        #                                modelParams['dropout'])

        # 可训练的嵌入层
        self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                      freeze=False)
        self.EmbedDrop = nn.Dropout(modelParams['dropout'])
        # self.EmbedNorm = nn.LayerNorm(embed_size)
        #
        self.Encoder = BiLstmEncoder(input_size=embed_size, **modelParams)

        self.MiddleEncoder = None

        # self.Encoder = TemporalConvNet(num_inputs=embed_size,
        #                                init_hidden_channel=modelParams['tcn_init_channel'],
        #                                num_channels=modelParams['tcn_channels'])

        self.Decoder = CNNEncoder1D([
            (modelParams['bidirectional'] + 1) * modelParams['hidden_size'],
            (modelParams['bidirectional'] + 1) * modelParams['hidden_size']
        ])
        # self.Decoder = StepMaxReduce()

        if modelParams['set_function'] == 'deepset':
            self.SetFunc = DeepSet(
                embed_dim=(modelParams['bidirectional'] + 1) *
                modelParams['hidden_size'],
                **modelParams)
        elif modelParams['set_function'] == 'transformer':
            self.SetFunc = TransformerSet(
                trans_input_size=(modelParams['bidirectional'] + 1) *
                modelParams['hidden_size'],
                **modelParams)
        else:
            raise ValueError('Unrecognized set function type:',
                             modelParams['set_function'])
Exemple #8
0
    def __init__(self, n, pretrained_matrix, embed_size, **modelParams):
        super(BaseLearner, self).__init__()

        self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                      freeze=False,
                                                      padding_idx=0)
        # self.EmbedNorm = nn.LayerNorm(embed_size)
        self.Encoder = BiLstmEncoder(input_size=embed_size, **modelParams)
        hidden_size = (
            1 + modelParams['bidirectional']) * modelParams['hidden_size']
        self.Decoder = CNNEncoder1D([hidden_size, hidden_size])

        # out_size = kwargs['hidden_size']
        self.fc = nn.Linear(hidden_size, n)  # 对于双向lstm,输出维度是隐藏层的两倍
Exemple #9
0
    def __init__(self, k, pretrained_matrix, embed_size, **modelParams):
        super(HAPNet, self).__init__()

        self.DataParallel = modelParams[
            'data_parallel'] if 'data_parallel' in modelParams else False

        # 可训练的嵌入层
        self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                      freeze=False)
        self.EmbedDrop = nn.Dropout(modelParams['dropout'])
        # self.EmbedNorm = nn.LayerNorm(embed_size)
        #
        self.Encoder = BiLstmEncoder(input_size=embed_size, **modelParams)
        # self.Encoder = TemporalConvNet(**modelParams)

        self.MiddleEncoder = None

        # 嵌入后的向量维度
        feature_dim = (1 + modelParams['bidirectional']) * modelParams[
            'hidden_size']  #modelParams['num_channels'][-1]#

        self.Decoder = CNNEncoder1D(num_channels=[feature_dim, feature_dim])

        # 获得样例注意力的模块
        # 将嵌入后的向量拼接成单通道矩阵后,有多少个支持集就为几个batch
        if k % 2 == 0:
            warnings.warn(
                "K=%d是偶数将会导致feature_attention中卷积核的宽度为偶数,因此部分将会发生一些变化")
            attention_paddings = [(k // 2, 0), (k // 2, 0), (0, 0)]
        else:
            attention_paddings = [(k // 2, 0), (k // 2, 0), (0, 0)]
        attention_channels = [1, 32, 64, 1]
        attention_strides = [(1, 1), (1, 1), (k, 1)]
        attention_kernels = [(k, 1), (k, 1), (k, 1)]
        attention_relus = ['leaky', 'leaky', 'leaky']

        self.FeatureAttention = nn.Sequential(*[
            CNNBlock2D(attention_channels[i],
                       attention_channels[i + 1],
                       attention_strides[i],
                       attention_kernels[i],
                       attention_paddings[i],
                       attention_relus[i],
                       pool=None) for i in range(len(attention_channels) - 1)
        ])

        # 获得样例注意力的模块
        # 将support重复query次,query重复n*k次,因为每个support在每个query下嵌入都不同
        self.InstanceAttention = InstanceAttention(feature_dim, feature_dim)
    def __init__(self, k,
                 pretrained_matrix,
                 embed_size,
                 **modelParams):
        super(ConvProtoNet, self).__init__()

        self.DataParallel = modelParams['data_parallel'] if 'data_parallel' in modelParams else False

        # 可训练的嵌入层
        self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix, freeze=False)
        self.EmbedDrop = nn.Dropout(modelParams['dropout'])
        # self.EmbedNorm = nn.LayerNorm(embed_size)
        #
        self.Encoder = BiLstmEncoder(input_size=embed_size,
                                     **modelParams)

        self.MiddleEncoder = None

        # self.Encoder = TemporalConvNet(num_inputs=embed_size,
        #                                init_hidden_channel=modelParams['tcn_init_channel'],
        #                                num_channels=modelParams['tcn_channels'])

        self.Decoder = CNNEncoder1D([(modelParams['bidirectional']+1)*modelParams['hidden_size'],
                                     (modelParams['bidirectional']+1)*modelParams['hidden_size']])


        if k%2==0:
            warnings.warn("K=%d是偶数将会导致feature_attention中卷积核的宽度为偶数,因此部分将会发生一些变化")
            attention_paddings = [(k // 2, 0), (k // 2, 0), (0, 0)]
        else:
            attention_paddings = [(k // 2, 0), (k // 2, 0), (0, 0)]
        attention_channels = [1,32,64,1]
        attention_strides = [(1,1),(1,1),(k,1)]
        attention_kernels = [(k,1),(k,1),(k,1)]
        attention_relus = ['relu','relu',None]
        self.Induction = nn.Sequential(
            *[CNNBlock2D(attention_channels[i],
                         attention_channels[i + 1],
                         attention_strides[i],
                         attention_kernels[i],
                         attention_paddings[i],
                         attention_relus[i],
                         pool=None)
              for i in range(len(attention_channels) - 1)]
        )
Exemple #11
0
    def __init__(self, pretrained_matrix, embed_size, **modelParams):
        super(SIMPLE, self).__init__()

        self.DataParallel = modelParams[
            'data_parallel'] if 'data_parallel' in modelParams else False

        sigma = 1 if 'init_sigma' not in modelParams else modelParams[
            'init_sigma']
        alpha = 0.1 if 'alpha' not in modelParams else modelParams['alpha']

        self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                      padding_idx=0)
        self.EmbedNorm = nn.LayerNorm(embed_size)
        self.EmbedDrop = nn.Dropout(modelParams['dropout'])

        hidden_size = (
            1 + modelParams['bidirectional']) * modelParams['hidden_size']

        #--------------------------------------------------------------------------
        self.Encoder = BiLstmEncoder(input_size=embed_size, **modelParams)
        # self.Encoder = BiLstmCellEncoder(input_size=embed_size, **modelParams)
        # self.Encoder = TransformerEncoder(embed_size=embed_size, **modelParams)
        #--------------------------------------------------------------------------

        #--------------------------------------------------------------------------
        self.MiddleEncoder = None  #MultiHeadAttention(mhatt_input_size=hidden_size, **modelParams)
        #--------------------------------------------------------------------------

        #--------------------------------------------------------------------------
        self.Decoder = CNNEncoder1D([hidden_size, hidden_size])
        # self.Decoder = SelfAttnReduction(input_size=hidden_size, **modelParams)
        # self.Decoder = BiliAttnReduction(input_dim=hidden_size, **modelParams)
        # self.Decoder = StepMaxReduce()
        #--------------------------------------------------------------------------

        # TODO: 使用Sigma
        self.Sigma = nn.Parameter(t.FloatTensor([sigma]))
        self.ALPHA = alpha
        self.Dim = (1 +
                    modelParams['bidirectional']) * modelParams['hidden_size']
        self.NumClusterSteps = 1 if 'cluster_num_step' not in modelParams else modelParams[
            'cluster_num_step']

        self.Clusters = None
        self.ClusterLabels = None
Exemple #12
0
    def __init__(self, pretrained_matrix, embed_size, **modelParams):
        super(NnNet, self).__init__()

        self.DataParallel = modelParams[
            'data_parallel'] if 'data_parallel' in modelParams else False

        # 可训练的嵌入层
        self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                      freeze=False)
        self.EmbedDrop = nn.Dropout(modelParams['dropout'])

        hidden_size = (
            1 + modelParams['bidirectional']) * modelParams['hidden_size']

        self.Encoder = BiLstmEncoder(input_size=embed_size, **modelParams)
        # self.Encoder = BiLstmCellEncoder(input_size=embed_size, **modelParams)

        self.Decoder = CNNEncoder1D([hidden_size, hidden_size])
Exemple #13
0
    def __init__(self,
                 n,
                 loss_fn,
                 pretrained_matrix,
                 embed_size,
                 word_cnt=None,
                 lr=0.01,
                 **modelParams):
        super(FT, self).__init__()

        self.Lr = lr
        self.LossFn = loss_fn
        self.DistTemp = modelParams[
            'temperature'] if 'temperature' in modelParams else 1
        self.DataParallel = modelParams[
            'data_parallel'] if 'data_parallel' in modelParams else False

        # 可训练的嵌入层
        if pretrained_matrix is not None:
            self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                          freeze=False)
        else:
            self.Embedding = nn.Embedding(word_cnt,
                                          embedding_dim=embed_size,
                                          padding_idx=0)

        # self.EmbedNorm = nn.LayerNorm(embed_size)
        self.EmbedDrop = nn.Dropout(modelParams['dropout'])

        hidden_size = (
            1 + modelParams['bidirectional']) * modelParams['hidden_size']

        #------------------------------------------------------------------------
        self.Encoder = BiLstmEncoder(input_size=embed_size, **modelParams)
        # self.Encoder = BiLstmCellEncoder(input_size=embed_size, **modelParams)
        #------------------------------------------------------------------------

        #------------------------------------------------------------------------
        self.MiddleEncoder = None  #MultiHeadAttention(mhatt_input_size=hidden_size, **modelParams)
        #------------------------------------------------------------------------

        self.Decoder = CNNEncoder1D([hidden_size, hidden_size])

        self.Classifier = nn.Linear(hidden_size, n)
Exemple #14
0
    def __init__(
            self,
            channels=[1, 32, 64, 64],  # 默认3个卷积层
            lstm_input_size=64 * 2 * 2,  # matrix大小为10×10,两次池化为2×2
            strides=None,
            hidden_size=64,
            layer_num=1,
            self_att_dim=32):
        super(CNNLstmProtoNet, self).__init__()

        self.Embedding = CNNEncoder(
            channels=channels,
            strides=strides,
            flatten=False,  # 保留序列信息
            pools=[True, True, False])

        self.LstmEncoder = BiLstmEncoder(input_size=lstm_input_size,
                                         hidden_size=hidden_size,
                                         layer_num=layer_num,
                                         self_att_dim=self_att_dim)
    def __init__(self, n, pretrained_matrix, embed_size, seq_len,
                 **modelParams):
        super(BaseLearner, self).__init__()
        # 需要adapt的参数名称
        self.adapted_keys = [
            # 'Attention.IntAtt.weight',
            # 'Attention.ExtAtt.weight',
            # 'Attention.Encoder.0.0.weight',
            # 'Attention.Encoder.0.1.weight',
            # 'Attention.Encoder.0.1.bias',
            'Attention.weight',
            'fc.weight',
            'fc.bias'
        ]

        self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                      freeze=False,
                                                      padding_idx=0)
        # self.EmbedNorm = nn.LayerNorm(embed_size)
        self.Encoder = BiLstmEncoder(input_size=embed_size,
                                     **modelParams)  #CNNEncoder1D(**kwargs)
        # self.Encoder = TemporalConvNet(**kwargs)
        # self.Encoder = TransformerEncoder(embed_size=embed_size,
        #                                   **kwargs)

        # self.Attention = nn.Linear(kwargs['num_channels'][-1],
        #                            1, bias=False)
        hidden_size = (
            1 + modelParams['bidirectional']) * modelParams['hidden_size']

        self.Attention = nn.Linear(hidden_size, 1, bias=False)

        # self.Attention = CNNEncoder1D(dims=[kwargs['hidden_size']*2, 256],
        #                               bn=[False])
        # self.Attention = AttnReduction(input_dim=2*kwargs['hidden_size'])

        # out_size = kwargs['hidden_size']
        # self.fc = nn.Linear(seq_len, n)
        self.fc = nn.Linear(hidden_size, n)
Exemple #16
0
    def __init__(self,
                 pretrained_matrix,
                 embed_size,
                 word_cnt=None,
                 **modelParams):
        super(ProtoNet, self).__init__()

        self.DistTemp = modelParams[
            'temperature'] if 'temperature' in modelParams else 1
        self.DataParallel = modelParams[
            'data_parallel'] if 'data_parallel' in modelParams else False

        # 可训练的嵌入层
        if pretrained_matrix is not None:
            self.Embedding = nn.Embedding.from_pretrained(pretrained_matrix,
                                                          freeze=False)
        else:
            self.Embedding = nn.Embedding(word_cnt,
                                          embedding_dim=embed_size,
                                          padding_idx=0)

        # self.EmbedNorm = nn.LayerNorm(embed_size)
        self.EmbedDrop = nn.Dropout(modelParams['dropout'])

        hidden_size = (
            1 + modelParams['bidirectional']) * modelParams['hidden_size']

        #------------------------------------------------------------------------
        self.Encoder = BiLstmEncoder(input_size=embed_size, **modelParams)
        # self.Encoder = BiLstmCellEncoder(input_size=embed_size, **modelParams)
        #------------------------------------------------------------------------

        #------------------------------------------------------------------------
        self.MiddleEncoder = None  #MultiHeadAttention(mhatt_input_size=hidden_size, **modelParams)
        #------------------------------------------------------------------------

        # self.Encoder = TransformerEncoder(embed_size=embed_size, **modelParams)

        # self.Encoder = CNNEncoder2D(dims=[1, 64, 128, 256, 256],
        #                             kernel_sizes=[3,3,3,3],
        #                             paddings=[1,1,1,1],
        #                             relus=[True,True,True,True],
        #                             pools=['max','max','max','ada'])
        # self.Encoder = CNNEncoder1D(**modelParams)
        # self.Encoder = CNNEncoder1D(**kwargs)

        # self.Encoder =  BiLstmEncoder(embed_size,  # 64
        #                               hidden_size=hidden,
        #                               layer_num=layer_num,
        #                               self_att_dim=self_att_dim,
        #                               useBN=False)
        # self.Encoder = TemporalConvNet(**modelParams)

        # self.Encoder = nn.ModuleList([
        #     BiLstmEncoder(embed_size,  # 64
        #                   hidden_size=hidden,
        #                   layer_num=1,
        #                   self_att_dim=self_att_dim,
        #                   useBN=False),
        #     BiLstmEncoder(2*hidden,  # 64
        #                   hidden_size=hidden,
        #                   layer_num=1,
        #                   self_att_dim=self_att_dim,
        #                   useBN=False)
        # ])
        # self.EncoderNorm = nn.ModuleList([
        #     nn.LayerNorm(2*hidden),
        #     nn.LayerNorm(2*hidden)
        # ])

        # self.Decoder = StepMaxReduce()

        # self.Encoder = BiLstmCellEncoder(input_size=embed_size,
        #                                  hidden_size=hidden,
        #                                  num_layers=layer_num,
        #                                  bidirectional=True,
        #                                  self_att_dim=self_att_dim)

        self.Decoder = CNNEncoder1D([hidden_size, hidden_size])
Exemple #17
0
            # ----------------------------feature-wise affine -------------------------------------
            weight = weight.expand_as(x)
            bias = bias.expand_as(x)
            #--------------------------------------------------------------------------


            return weight*x + bias

    def penalizedNorm(self):
        return self.WeightMuplier.norm(), self.BiasMuplier.norm()





if __name__ == '__main__':
    model = BiLstmEncoder(input_size=64)