Exemple #1
0
    def __init__(self,
                 K,
                 scale_table=None,
                 mean_table=None,
                 weight_table=None,
                 *args,
                 scale_bound=0.11,
                 tail_mass=1e-9,
                 **kwargs):
        super().__init__(*args, **kwargs)

        #ywz for mixture numbers:K
        self.K = K

        if scale_table and \
                (scale_table != sorted(scale_table) or any(s <= 0 for s in scale_table)):
            raise ValueError(f'Invalid scale_table "({scale_table})"')

        self.register_buffer(
            'scale_table',
            self._prepare_scale_table(scale_table)
            if scale_table else torch.Tensor())

        self.register_buffer(
            'scale_bound',
            torch.Tensor([float(scale_bound)])
            if scale_bound is not None else None)

        self.tail_mass = float(tail_mass)
        if scale_bound is None and scale_table:
            self.lower_bound_scale = LowerBound(self.scale_table[0])
        elif scale_bound > 0:
            self.lower_bound_scale = LowerBound(scale_bound)
        else:
            raise ValueError('Invalid parameters')
Exemple #2
0
    def __init__(self, scale_table, *args, scale_bound=0.11, tail_mass=1e-9, **kwargs):
        super().__init__(*args, **kwargs)

        if not isinstance(scale_table, (type(None), list, tuple)):
            raise ValueError(f'Invalid type for scale_table "{type(scale_table)}"')

        if isinstance(scale_table, (list, tuple)) and len(scale_table) < 1:
            raise ValueError(f'Invalid scale_table length "{len(scale_table)}"')

        if scale_table and (
            scale_table != sorted(scale_table) or any(s <= 0 for s in scale_table)
        ):
            raise ValueError(f'Invalid scale_table "({scale_table})"')

        self.tail_mass = float(tail_mass)
        if scale_bound is None and scale_table:
            self.lower_bound_scale = LowerBound(self.scale_table[0])
        elif scale_bound > 0:
            self.lower_bound_scale = LowerBound(scale_bound)
        else:
            raise ValueError("Invalid parameters")

        self.register_buffer(
            "scale_table",
            self._prepare_scale_table(scale_table) if scale_table else torch.Tensor(),
        )

        self.register_buffer(
            "scale_bound",
            torch.Tensor([float(scale_bound)]) if scale_bound is not None else None,
        )
Exemple #3
0
    def test_lower_bound_grads(self):
        x = torch.rand(16, requires_grad=True)
        bound = torch.rand(1)
        lower_bound = LowerBound(bound)
        y = lower_bound(x)
        y.backward(x)

        assert x.grad is not None
        assert (x.grad == ((x >= bound) * x)).all()
Exemple #4
0
    def test_lower_bound_ok(self):
        x = torch.rand(16)
        bound = torch.rand(1)
        lower_bound = LowerBound(bound)

        assert (lower_bound(x) == torch.max(x, bound)).all()

        scripted = torch.jit.script(lower_bound)
        assert (scripted(x) == torch.max(x, bound)).all()
Exemple #5
0
    def __init__(
        self, likelihood_bound=1e-9, entropy_coder=None, entropy_coder_precision=16
    ):
        super().__init__()

        if entropy_coder is None:
            entropy_coder = default_entropy_coder()
        self.entropy_coder = _EntropyCoder(entropy_coder)
        self.entropy_coder_precision = int(entropy_coder_precision)

        self.use_likelihood_bound = likelihood_bound > 0
        if self.use_likelihood_bound:
            self.likelihood_lower_bound = LowerBound(likelihood_bound)

        # to be filled on update()
        self.register_buffer("_offset", torch.IntTensor())
        self.register_buffer("_quantized_cdf", torch.IntTensor())
        self.register_buffer("_cdf_length", torch.IntTensor())