def test_load_sim_split(): df_train_0, df_test_0 = load_sim(config='IC86.2012', energy_reco=False, log_energy_min=None, log_energy_max=None, test_size=0.5) df_train_1, df_test_1 = load_sim(config='IC86.2012', energy_reco=False, log_energy_min=None, log_energy_max=None, test_size=0.5) pd.testing.assert_frame_equal(df_train_0, df_train_1) pd.testing.assert_frame_equal(df_test_0, df_test_1)
def test_load_sim_energy_reco(energy_reco): df = load_sim(test_size=0, energy_reco=energy_reco, log_energy_min=None, log_energy_max=None) assert ('reco_log_energy' in df.columns) == energy_reco
def test_load_sim_log_energy_max(): log_energy_max = 7.5 df = load_sim(test_size=0, energy_reco=False, energy_cut_key='MC_log_energy', log_energy_min=None, log_energy_max=log_energy_max) np.testing.assert_allclose(log_energy_max, df['MC_log_energy'].max(), rtol=1e-2)
def test_load_sim_test_size(): test_size = 0.4 df_train, df_test = load_sim(test_size=test_size, energy_reco=False, log_energy_min=None, log_energy_max=None) n_train = len(df_train) n_test = len(df_test) np.testing.assert_allclose(n_test / (n_test + n_train), test_size, rtol=1e-2)