def _reconfigure_dataloader_test(self):
     transform_rgb = transforms.Compose([
         transforms.Scale(256),
         transforms.CenterCrop(self.net.input_spatial_size),
         transforms.ToTensor(),
         transforms.Normalize(self.mean, self.std)
     ])
     transform_of = transforms.Compose([
         transforms.Scale(256),
         transforms.CenterCrop(self.net.input_spatial_size),
         transforms.ToTensor(),
         transforms.SubMeanDisplacement()
     ])
     transform_cod = transforms.Compose([
         transforms.Scale(256),
         transforms.CenterCrop(self.net.input_spatial_size),
         transforms.ToTensor()
     ])
     dataset_infos = []
     for dataset_info_type in self.dataset_info_types:
         dataset_info = dataset_info_type(train=False,
                                          num_frames=self.num_frames_flow,
                                          split=self.split)
         dataset_infos.append(dataset_info)
     dataset = self.dataset_type(infos=dataset_infos,
                                 train=False,
                                 transform_rgb=transform_rgb,
                                 transform_of=transform_of,
                                 transform_cod=transform_cod,
                                 num_frames=self.num_frames_flow,
                                 num_frames_cod=self.num_frames_cod,
                                 modalities=self.modalities)
     self._reconfigure_dataloader(dataset,
                                  self.batch_size_test,
                                  shuffle=True)
Exemple #2
0
	def _reconfigure_dataloader_test(self):
		transform = transforms.Compose([
			transforms.Scale(256), 
			transforms.TenCrop(self.net.input_spatial_size),
			transforms.ToTensor()])
		dataset_infos = []
		for dataset_info_type in self.dataset_info_types:
			dataset_info = dataset_info_type(train=False, num_frames=self.num_frames, 
				split=self.split)
			dataset_infos.append(dataset_info)
		dataset = self.dataset_type(infos=dataset_infos, train=False, transform=transform, 
			num_test=self.num_test, num_frames=self.num_frames, nodiff=self.nodiff)
		self._reconfigure_dataloader(dataset, self.batch_size_test, shuffle=False)
 def _reconfigure_dataloader_train(self):
     transform_rgb = transforms.Compose([
         transforms.Scale(256),
         transforms.RandomCrop(self.net.input_spatial_size),
         transforms.RandomHorizontalFlip(), self.transform_color,
         transforms.ToTensor(),
         transforms.Normalize(self.mean, self.std)
     ])
     transform_of = transforms.Compose([
         transforms.Scale(256),
         transforms.RandomCrop(self.net.input_spatial_size),
         transforms.RandomHorizontalFlip(),
         transforms.ToTensor(),
         transforms.SubMeanDisplacement()
     ])
     transform_cod = transforms.Compose([
         transforms.Scale(256),
         transforms.RandomCrop(self.net.input_spatial_size),
         transforms.RandomHorizontalFlip(),
         transforms.ToTensor()
     ])
     dataset_infos = []
     for dataset_info_type in self.dataset_info_types:
         dataset_info = dataset_info_type(train=True,
                                          num_frames=self.num_frames_flow,
                                          split=self.split)
         dataset_infos.append(dataset_info)
     dataset = self.dataset_type(infos=dataset_infos,
                                 train=True,
                                 transform_rgb=transform_rgb,
                                 transform_of=transform_of,
                                 transform_cod=transform_cod,
                                 num_frames=self.num_frames_flow,
                                 num_frames_cod=self.num_frames_cod,
                                 modalities=self.modalities,
                                 high_motion=self.high_motion,
                                 time_flip=self.time_flip)
     self._reconfigure_dataloader(dataset, self.batch_size, shuffle=True)
Exemple #4
0
	def _reconfigure_dataloader_train(self):
		transform = transforms.Compose([
			transforms.Scale(256), 
			transforms.RandomCrop(self.net.input_spatial_size),
			transforms.RandomHorizontalFlip(), 
			transforms.ToTensor()])
		dataset_infos = []
		for dataset_info_type in self.dataset_info_types:
			dataset_info = dataset_info_type(train=True, num_frames=self.num_frames, 
				split=self.split)
			dataset_infos.append(dataset_info)
		dataset = self.dataset_type(infos=dataset_infos, train=True, transform=transform,
			num_frames=self.num_frames, nodiff=self.nodiff, time_flip=self.time_flip)
		self._reconfigure_dataloader(dataset, self.batch_size, shuffle=True)
Exemple #5
0
	def _reconfigure_dataloader_train(self):
		rgb = self.rgb
		transform = transforms.Compose([
			transforms.Scale(256), 
			transforms.RandomCrop(self.net.input_spatial_size),
			transforms.RandomHorizontalFlip(), 
			transforms.RandomColorJitter(brightness=rgb, contrast=rgb, saturation=rgb, hue=rgb),
			transforms.ToTensor(),
			transforms.Normalize(self.mean, self.std)])
		dataset_infos = []
		for dataset_info_type in self.dataset_info_types:
			dataset_info = dataset_info_type(train=True, num_frames=1,
				split=self.split)
			dataset_infos.append(dataset_info)
		dataset = self.dataset_type(infos=dataset_infos, train=True, transform=transform)
		self._reconfigure_dataloader(dataset, self.batch_size, shuffle=True)