Exemple #1
0
def test_cv_update_batch():
    cv1 = ContinuousValue()
    cv2 = ContinuousValue()
    nums = [random() for i in range(10)]

    for n in nums:
        cv1.update(n)

    cv2.update_batch(nums)

    assert cv1.unbiased_mean() == cv2.unbiased_mean()
    assert cv1.biased_std() == cv2.biased_std()
Exemple #2
0
def test_cv_unbiased_std():
    cv = ContinuousValue()
    assert cv.unbiased_std() == 0

    true_std = 10
    error_biased = []
    error_unbiased = []
    for _ in range(100):
        cv = ContinuousValue()
        for _ in range(4):
            cv.update(normalvariate(0, true_std))
        error_biased.append(cv.biased_std() - true_std)
        error_unbiased.append(cv.unbiased_std() - true_std)

    assert abs(sum(error_unbiased)) < abs(sum(error_biased))
Exemple #3
0
def test_cv_biased_std():
    cv = ContinuousValue()
    for _ in range(1000):
        cv.update(normalvariate(0, 1))
    assert cv.biased_std() - 1 <= 0.1