def __initSmallWorld(self):
		defaultDict = {'rewiringProbability' : 0.5, 'delayTime' : 0.002, 'refractoryPeriod' : 0.021, 'nearestNeighbours': 25, 'nodeType': co.pcoIntegrateFireDelay()}
		print "Initializing SmallWorld Network"
		self.__appendParamsToDefault(defaultDict)

		self.cycle(self.__nodeCount, defaultDict['nearestNeighbours'], defaultDict['nodeType'], co.weightedEdge(defaultDict['couplingStrength']))
	        self.rewire(defaultDict['rewiringProbability'], defaultDict['nodeType'])
		self.randomizeStates(defaultDict['nodeType'], co.uniform(0.0, 1.0));		
Exemple #2
0
    def __init__(self):
        """ DOCSTRING: """
        self.defaultDict_NetworkType = {}
#Topologie-Defaults
        self.__defaultDict_smallWorld = {  # Defaults for smallWorld generation
                                'rewiringProbability': 0.5,    
                                'nearestNeighbours': 25,
                                'edgeType': None,
                                'distributionType': co.uniform(0.0,1.0),
                                }
        self.__defaultDict_randomGraph = {}
        self.__defaultDict_scaleFree = {}
import conedy as co


N = co.network();


N.cycle (100,10, co.node(), co.weightedEdge());
print "should be 20:"+ str(N.meanDegree())
N.saveAdjacencyList("output/rewireWeights.co.before");


N.rewireWeights(0.5, co.uniform (2.0,2.0));

N.saveAdjacencyList("output/rewireWeights.co.after");
print "should be close to 1.5:"+ str(N.meanWeight())

Exemple #4
0
N = co.network()

nodeblueprint = co.gaussianRoessler()
co.set("gaussianRoessler_a", 0.165)
co.set("gaussianRoessler_b", 0.2)
co.set("gaussianRoessler_c", 10.0)
co.set("gaussianRoessler_sigmaNoise", 0.1)


N.cycle(100, 4, nodeblueprint, co.weightedEdge(0.1))
N.rewire(0.1)

print "clustering coefficient:" + str(N.meanClustering())
print "mean path length:" + str(N.meanPathLength())

if N.isConnected():
    N.betweennessCentrality("N.betweenness")
    N.closenessCentrality("N.closeness")

N.randomizeParameter("gaussianRoessler_omega", co.uniform(0.8, 1.2))
N.randomizeStates(nodeblueprint, co.uniform(-0.1, 0.1), co.uniform(-0.1, 0.1), co.uniform(-0.1, 0.1))

N.evolve(0.0, 100.0)

N.observeTime("output_Roessler")
N.observeAll("output_Roessler", co.component(2))
co.set("samplingTime", 0.01)

N.evolve(100.0, 200.0)
Exemple #5
0
import conedy as co

N = co.network()

N.cycle(100, 1, co.node(), co.weightedEdge())

N.randomizeWeights(co.uniform(0.0, 1.50))

print "should be close to 0.75:" + str(N.meanWeight())
co.set("pcoIntegrateFire_noiseFrequency", 0.0)
co.set("pcoIntegrateFire_timeDelay", 0.01)
co.set("pcoIntegrateFire_t_ref", 0.05)
co.set("pcoIntegrateFire_alpha", 0.9)


N = co.network()




rewiring = 0.5
coupling = 0.012

#n.useLatticePositioning(100,100);

N.torusNearestNeighbors(40,40,36.0, co.pcoIntegrateFire(), co.weightedEdge())

N.rewire(rewiring)

N.randomizeStates(co.pcoIntegrateFire(), co.uniform(0.0,1.0));
N.randomizeWeights(co.uniform(coupling,coupling));

N.saveAdjacencyList("output/nonconverging.py.graph");

N.observeTime("output/nonconverging.py.phaseCoherence");
N.observePhaseCoherence("output/nonconverging.py.phaseCoherence");
N.evolve(0.0,100.0);

Exemple #7
0
import conedy as co

N = co.network()

N.randomNetwork(100, 0.2, co.node(), co.weightedEdge())

N.randomizeWeights(co.uniform(0.0, 1.5))

print "Should be close to 0.75:" + str(N.meanWeight())
Exemple #8
0

import conedy as co


random = co.uniform (0.0,1.0)

import conedy as co


N = co.network()


N.randomNetwork(100, 0.1, co.roessler())


N.randomizeParameter ("roessler_omega", co.uniform (0.80, 0.85))


for i in range (0,100):
	print "Node " + str (i)+ ":"+ str(N.getParam(i, "roessler_omega"))







import conedy as co
from os import system

n = co.network()

networkSize = 10

n.randomNetwork(networkSize, 0.4, co.node(), co.weightedEdge())
n.randomizeWeights(co.uniform(1.1, 1.1))

n.saveAdjacencyList("output/normalizeInputs.co.before")
n.normalizeInWeightSum(3.0)

print "Should be " + 3.0 / n.meanDegree() + " :" + n.meanWeight()

n.saveAdjacencyList("output/normalizeInputs.co.after")

system(
    "sort -n output/normalizeInputs.co.after -k2 > output/normalizeInputs.co.after.sort"
)
Exemple #11
0
import conedy as co


N = co.network()


N.randomNetwork(100, 0.1, co.roessler())


N.randomizeStates(co.roessler(), co.uniform (0.0,1.0), co.uniform (0.2,0.4), co.constant(0.8))

N.observeAll("output/randomizeStates.py.allStates",co.component(0))
N.observeAll("output/randomizeStates.py.allStates",co.component(1))
N.observeAll("output/randomizeStates.py.allStates",co.component(2))
N.snapshot()



import conedy as co

N = co.network()

N.addNode(co.kuramoto())
N.addNode(co.kuramoto())

N.addEdge (0,1, co.weightedEdge(2.0))
print "Should be true: " + str (N.isDirected())
N.addEdge (1,0, co.weightedEdge(0.1))
print "Should be true: " + str (N.isDirected())
N.randomizeWeights(co.uniform (3.0, 3.0))
print "Should be false: " + str (N.isDirected())


import conedy as co


co.set("pcoMirollo_a" , 0.015)
co.set("pcoMirollo_b" , 0.045)


N = co.network()
N.randomNetwork(1000, 0.01, co.pcoMirollo(),co.edge())
N.randomizeStates(co.pcoMirollo(), co.uniform(0.0, 1.0))
N.observeTime("order.dat")
N.observePhaseCoherence("order.dat")
N.evolve(0.0, 1000.0)
import conedy as co
N = co.network()
co.set ("roessler_a", 0.22)
co.set ("roessler_b", 0.1)
co.set ("roessler_c", 8.5)
r1 = N.addNode(co.roessler())
r2 = N.addNode(co.roessler())
r3 = N.addNode(co.roessler())
N.setParam(r1, "roessler_omega", 1.02)
N.setParam(r2, "roessler_omega", 1.0)
N.setParam(r3, "roessler_omega", 0.98)
N.randomizeStates (co.roessler(), co.uniform (-10.0, 10.0),co.uniform (-5.0, 5.0), co.uniform (-0.5, 1.5))
N.addEdge(r1, r2, co.weightedEdge(0.075))
N.addEdge(r2, r1, co.weightedEdge(0.075))
N.addEdge(r1, r3, co.weightedEdge(0.075))
N.addEdge(r3, r1, co.weightedEdge(0.075))
N.evolve(0.0, 100.0)
N.observeTime("roessler.dat")
N.observe(r1, "roessler.dat", co.component(1))
N.observe(r2, "roessler.dat", co.component(1))
N.observe(r3, "roessler.dat", co.component(1))
co.set("samplingTime", 0.01)
N.evolve(100.0, 200.0)

import conedy as co

N = co.network()


for i in range (0,10000):
	N.addNode (co.node ())

N.addRandomEdgesDegreeDistribution(co.uniform (0.0,100.0), co.edge()  )

N.inDegreeDistribution("output/addRandomEdgesDegreeDistribution.py.degDist")
print N.meanDegree()

import conedy as co

N = co.network()

N.addNode(co.kuramoto())
N.addNode(co.kuramoto())

N.addEdge(0, 1, co.weightedEdge(2.0))
print "Should be true: " + str(N.isDirected())
N.addEdge(1, 0, co.weightedEdge(0.1))
print "Should be true: " + str(N.isDirected())
N.randomizeWeights(co.uniform(3.0, 3.0))
print "Should be false: " + str(N.isDirected())