Exemple #1
0
def main():
    DEVICE = torch.device('cuda:{}'.format(args.d))
    torch.backends.cudnn.benchmark = True

    net = create_network()
    net.to(DEVICE)
    criterion = config.create_loss_function().to(DEVICE)

    optimizer = config.create_optimizer(net.parameters())
    lr_scheduler = config.create_lr_scheduler(optimizer)

    ds_train = create_train_dataset(args.batch_size)
    ds_val = create_test_dataset(args.batch_size)

    TrainAttack = config.create_attack_method(DEVICE)
    EvalAttack = config.create_evaluation_attack_method(DEVICE)

    now_epoch = 0

    if args.auto_continue:
        args.resume = os.path.join(config.model_dir, 'last.checkpoint')
    if args.resume is not None and os.path.isfile(args.resume):
        now_epoch = load_checkpoint(args.resume, net, optimizer, lr_scheduler)

    while True:
        if now_epoch > config.num_epochs:
            break
        now_epoch = now_epoch + 1

        descrip_str = 'Training epoch:{}/{} -- lr:{}'.format(
            now_epoch, config.num_epochs,
            lr_scheduler.get_lr()[0])
        train_one_epoch(net,
                        ds_train,
                        optimizer,
                        criterion,
                        DEVICE,
                        descrip_str,
                        TrainAttack,
                        adv_coef=args.adv_coef)
        if config.eval_interval > 0 and now_epoch % config.eval_interval == 0:
            eval_one_epoch(net, ds_val, DEVICE, EvalAttack)

        lr_scheduler.step()

        save_checkpoint(now_epoch,
                        net,
                        optimizer,
                        lr_scheduler,
                        file_name=os.path.join(
                            config.model_dir,
                            'epoch-{}.checkpoint'.format(now_epoch)))
def main():
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    torch.backends.cudnn.benchmark = True

    net = create_network()
    net.to(device)
    criterion = config.create_loss_function().to(device)

    optimizer = config.create_optimizer(net.parameters())
    lr_scheduler = config.create_lr_scheduler(optimizer)

    ds_train = create_train_dataset(args.batch_size)
    ds_val = create_test_dataset(args.batch_size)

    train_attack = config.create_attack_method(device)
    eval_attack = config.create_evaluation_attack_method(device)

    now_epoch = 0

    if args.auto_continue:
        args.resume = os.path.join(config.model_dir, 'last.checkpoint')
    if args.resume is not None and os.path.isfile(args.resume):
        now_epoch = load_checkpoint(args.resume, net, optimizer, lr_scheduler)

    for i in range(now_epoch, config.num_epochs):
        # if now_epoch > config.num_epochs:
        #     break
        # now_epoch = now_epoch + 1

        descrip_str = 'Training epoch:{}/{} -- lr:{}'.format(i, config.num_epochs,
                                                             lr_scheduler.get_last_lr()[0])
        train_one_epoch(net, ds_train, optimizer, criterion, device,
                        descrip_str, train_attack, adv_coef=args.adv_coef)
        if config.eval_interval > 0 and i % config.eval_interval == 0:
            eval_one_epoch(net, ds_val, device, eval_attack)

        lr_scheduler.step()

    save_checkpoint(i, net, optimizer, lr_scheduler,
                    file_name=os.path.join(config.model_dir, 'epoch-{}.checkpoint'.format(i)))
Exemple #3
0
import os

DEVICE = torch.device('cuda:{}'.format(args.d))
torch.backends.cudnn.benchmark = True

net = create_network()
net.to(DEVICE)
criterion = config.create_loss_function().to(DEVICE)

optimizer = config.create_optimizer(net.parameters())
lr_scheduler = config.create_lr_scheduler(optimizer)

ds_train = create_train_dataset(args.batch_size)
ds_val = create_test_dataset(args.batch_size)

TrainAttack = config.create_attack_method(DEVICE)
EvalAttack = config.create_evaluation_attack_method(DEVICE)

now_epoch = 0

if args.auto_continue:
    args.resume = os.path.join(config.model_dir, 'last.checkpoint')
if args.resume is not None and os.path.isfile(args.resume):
    now_epoch = load_checkpoint(args.resume, net, optimizer,lr_scheduler)

while True:
    if now_epoch > config.num_epochs:
        break
    now_epoch = now_epoch + 1

    descrip_str = 'Training epoch:{}/{} -- lr:{}'.format(now_epoch, config.num_epochs,