Exemple #1
0
def train(all_batch=[], read_from_file=True, section=[]):
    if read_from_file:
        with open(config.get_pkl_path("train"), "rb") as f:
            train_word_batches, train_char_batches, train_char_len_batches, train_pos_tag_batches, train_entity_batches, train_toi_batches, train_word_origin_batches = pickle.load(
                f)
        with open(config.get_pkl_path("test"), "rb") as f:
            test_word_batches, test_char_batches, test_char_len_batches, test_pos_tag_batches, test_entity_batches, test_toi_batches, test_word_origin_batches = pickle.load(
                f)
    else:
        train_word_batches, train_char_batches, train_char_len_batches, train_pos_tag_batches, train_entity_batches, train_toi_batches, train_toi_batch_layer0, train_toi_batch_layer1 = all_batch[
            0]
        dev_word_batches, dev_char_batches, dev_char_len_batches, dev_pos_tag_batches, dev_entity_batches, dev_toi_batches, dev_toi_batch_layer0, dev_toi_batch_layer1 = all_batch[
            1]
        test_word_batches, test_char_batches, test_char_len_batches, test_pos_tag_batches, test_entity_batches, test_toi_batches, test_toi_batch_layer0, test_toi_batch_layer1 = all_batch[
            2]

    misc_config = pickle.load(open(config.get_pkl_path("config"), "rb"))
    config.load_config(misc_config)

    ner_model = TOI_BERT(config)
    if config.if_DTE:
        ner_model.load_vector()

    if (len(section)):
        config.layer_maxlen = section

    if config.if_gpu and torch.cuda.is_available():
        ner_model = ner_model.cuda()

    evaluate = Evaluate(ner_model, config)

    parameters = filter(lambda p: p.requires_grad, ner_model.parameters())
    optimizer = create_opt(parameters, config.opt, config.lr)

    best_model = None
    best_per = 0
    pre_loss = 100000
    train_all_batches = list(
        zip(train_word_batches, train_char_batches, train_char_len_batches,
            train_pos_tag_batches, train_entity_batches, train_toi_batches,
            train_word_origin_batches))
    tokenizer = BertTokenizer.from_pretrained(
        f"bert-{config.bert_config}-uncased")
    bert_model = BertModel.from_pretrained(
        f"{config.bert_path}{config.bert_config}")
    bert_model.cuda()
    bert_model.eval()
    for parameter in bert_model.parameters():
        parameter.requires_grad = False

    for e_ in range(config.epoch):
        print("Epoch:", e_ + 1)

        cur_time = time.time()
        if config.if_shuffle:
            shuffle(train_all_batches)
        losses = []
        ner_model.train()
        config.mode = 'Train'
        runtimeModel = ModelInRuntime.instance(
            (ner_model, bert_model, tokenizer, config,
             len(train_all_batches) + len(test_word_batches)))
        runtimeModel.model = ner_model

        for each_batch in tqdm(train_all_batches):
            optimizer.zero_grad()
            runtimeModel.setTrainData(each_batch)
            result, _, aim = runtimeModel.runClassification()
            loss = ner_model.calc_loss(result, aim)
            loss.backward()
            optimizer.step()
            losses.append(loss.data.cpu().numpy())

        sub_loss = np.mean(losses)
        print(f'Avg loss = {sub_loss:.4f}')
        print(f"Training step took {time.time() - cur_time:.0f} seconds")
        if e_ >= 0:
            print("dev:")
            cls_f1 = evaluate.get_f1(
                zip(test_word_batches, test_char_batches,
                    test_char_len_batches, test_pos_tag_batches,
                    test_entity_batches, test_toi_batches,
                    test_word_origin_batches), bert_model)
            if cls_f1 > best_per and cls_f1 > config.score_th:
                best_per = cls_f1
                model_path = config.get_model_path(
                ) + f"/epoch{e_ + 1}_f1_{cls_f1:.4f}.pth"
                torch.save(ner_model.state_dict(), model_path)
                print("model save in " + model_path)
            print('\n\n')
        if sub_loss >= pre_loss:
            adjust_learning_rate(optimizer)
        pre_loss = sub_loss
Exemple #2
0
            pos_tag_batch_var = pos_tag_batch_var.cuda()
            gold_label_vec = gold_label_vec.cuda()

        ner_model.train()
        optimizer.zero_grad()
        cls_s, _ = ner_model(mask_batch_var, word_batch_var, char_batch_var, char_len_batch, pos_tag_batch_var, toi_box_batch)
        loss = ner_model.calc_loss(cls_s, gold_label_vec)

        loss.backward()
        # torch.nn.utils.clip_grad_norm_(ner_model.parameters(), 3, norm_type=2)
        optimizer.step()

        losses.append(loss.data.cpu().numpy())

    sub_loss = np.mean(losses)
    print(f'Avg loss = {sub_loss:.4f}')
    print(f"Training step took {time.time() - cur_time:.0f} seconds")
    if e_ >= 20:
        print("Dev:")
        cls_f1 = evaluate.get_f1(zip(dev_word_batches, dev_char_batches, dev_char_len_batches, dev_pos_tag_batches, dev_entity_batches, dev_toi_batches))
        if cls_f1 > best_per:
            best_per = cls_f1
            model_path = config.get_model_path() + f"epoch{e_ + 1}.pth"
            torch.save(ner_model.state_dict(), model_path)
            print("model save in " + model_path)
        print('\n\n')

    if sub_loss >= pre_loss:
        adjust_learning_rate(optimizer)
    pre_loss = sub_loss
Exemple #3
0
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

mode = "test"  # test dev
test_best = True
epoch_start = 1
epoch_end = 100

misc_config = pickle.load(open(config.get_pkl_path("config"), "rb"))
config.load_config(misc_config)
bert_model = BertModel.from_pretrained(
    f"{config.bert_path}{config.bert_config}")
bert_model.cuda()

bert_model.eval()

model_path = config.get_model_path() + "f1_0.771.pth"

with open(config.get_pkl_path(mode), "rb") as f:
    word_batches, char_batches, char_len_batches, pos_tag_batches, entity_batches, toi_batches, word_origin_batches = pickle.load(
        f)
print("load data from " + config.get_pkl_path(mode))

#print(model_path)
if not os.path.exists(model_path):
    print("loda model error")
print("load model from " + model_path)
ner_model = TOI_BERT(config)
ner_model.load_state_dict(torch.load(model_path))
if config.if_gpu and torch.cuda.is_available():
    ner_model = ner_model.cuda()
evaluate = Evaluate(ner_model, config)
Exemple #4
0
epoch_end = 50

config.if_detail = True
config.if_output = False
config.if_filter = True
config.score_th = 0.5
misc_config = pickle.load(open(config.get_pkl_path("config"), "rb"))
config.load_config(misc_config)

with open(config.get_pkl_path(mode), "rb") as f:
    word_batches, char_batches, char_len_batches, pos_tag_batches, entity_batches, toi_batches = pickle.load(
        f)
print("load data from " + config.get_pkl_path(mode))

for e in range(epoch_start, epoch_end + 1):
    model_path = config.get_model_path(
    ) + f"epoch{e}.pth"  # test trained model
    # model_path = config.get_model_path() + f"best.pth"  # test best model
    if not os.path.exists(model_path):
        continue
    print("load model from " + model_path)
    ner_model = TOICNN(config)
    ner_model.load_state_dict(torch.load(model_path))
    if config.if_gpu and torch.cuda.is_available():
        ner_model = ner_model.cuda()
    evaluate = Evaluate(ner_model, config)

    evaluate.get_f1(
        zip(word_batches, char_batches, char_len_batches, pos_tag_batches,
            entity_batches, toi_batches))
    print("\n\n")