def construct_envs(args): env_configs = [] baseline_configs = [] basic_config = cfg_env(config_paths=args.task_config, opts=args.opts) dataset = make_dataset(basic_config.DATASET.TYPE) scenes = dataset.get_scenes_to_load(basic_config.DATASET) if len(scenes) > 0: random.shuffle(scenes) assert len(scenes) >= args.num_processes, ( "reduce the number of processes as there " "aren't enough number of scenes" ) scene_split_size = int(np.floor(len(scenes) / args.num_processes)) scene_splits = [[] for _ in range(args.num_processes)] for j, s in enumerate(scenes): scene_splits[j % len(scene_splits)].append(s) assert sum(map(len, scene_splits)) == len(scenes) for i in range(args.num_processes): config_env = cfg_env(config_paths=args.task_config, opts=args.opts) config_env.defrost() if len(scenes) > 0: config_env.DATASET.CONTENT_SCENES = scene_splits[i] config_env.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = args.sim_gpu_id agent_sensors = args.sensors.strip().split(",") for sensor in agent_sensors: assert sensor in ["RGB_SENSOR", "DEPTH_SENSOR"] config_env.SIMULATOR.AGENT_0.SENSORS = agent_sensors config_env.freeze() env_configs.append(config_env) config_baseline = cfg_baseline() baseline_configs.append(config_baseline) logger.info("config_env: {}".format(config_env)) envs = habitat.VectorEnv( make_env_fn=make_env_fn, env_fn_args=tuple( tuple( zip(env_configs, baseline_configs, range(args.num_processes)) ) ), ) return envs
def construct_envs(args): env_configs = [] baseline_configs = [] basic_config = cfg_env(config_file=args.task_config) scenes = PointNavDatasetV1.get_scenes_to_load(basic_config.DATASET) if len(scenes) > 0: random.shuffle(scenes) assert len(scenes) >= args.num_processes, ( "reduce the number of processes as there " "aren't enough number of scenes") scene_split_size = int(np.floor(len(scenes) / args.num_processes)) for i in range(args.num_processes): config_env = cfg_env(config_file=args.task_config) config_env.defrost() if len(scenes) > 0: config_env.DATASET.POINTNAVV1.CONTENT_SCENES = scenes[ i * scene_split_size:(i + 1) * scene_split_size] config_env.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = args.sim_gpu_id agent_sensors = args.sensors.strip().split(",") for sensor in agent_sensors: assert sensor in ["RGB_SENSOR", "DEPTH_SENSOR"] config_env.SIMULATOR.AGENT_0.SENSORS = agent_sensors config_env.freeze() env_configs.append(config_env) config_baseline = cfg_baseline() baseline_configs.append(config_baseline) logger.info("config_env: {}".format(config_env)) envs = habitat.VectorEnv( make_env_fn=make_env_fn, env_fn_args=tuple( tuple(zip(env_configs, baseline_configs, range(args.num_processes)))), ) return envs
def main(): parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, required=True) parser.add_argument("--sim-gpu-id", type=int, required=True) parser.add_argument("--pth-gpu-id", type=int, required=True) parser.add_argument("--num-processes", type=int, required=True) parser.add_argument("--hidden-size", type=int, default=512) parser.add_argument("--count-test-episodes", type=int, default=100) parser.add_argument( "--sensors", type=str, default="RGB_SENSOR,DEPTH_SENSOR", help="comma separated string containing different" "sensors to use, currently 'RGB_SENSOR' and" "'DEPTH_SENSOR' are supported", ) parser.add_argument( "--task-config", type=str, default="configs/tasks/pointnav.yaml", help="path to config yaml containing information about task", ) args = parser.parse_args() device = torch.device("cuda:{}".format(args.pth_gpu_id)) env_configs = [] baseline_configs = [] for _ in range(args.num_processes): config_env = get_config(config_paths=args.task_config) config_env.defrost() config_env.DATASET.SPLIT = "val" agent_sensors = args.sensors.strip().split(",") for sensor in agent_sensors: assert sensor in ["RGB_SENSOR", "DEPTH_SENSOR"] config_env.SIMULATOR.AGENT_0.SENSORS = agent_sensors config_env.freeze() env_configs.append(config_env) config_baseline = cfg_baseline() baseline_configs.append(config_baseline) assert len(baseline_configs) > 0, "empty list of datasets" envs = habitat.VectorEnv( make_env_fn=make_env_fn, env_fn_args=tuple( tuple(zip(env_configs, baseline_configs, range(args.num_processes)))), ) ckpt = torch.load(args.model_path, map_location=device) actor_critic = Policy( observation_space=envs.observation_spaces[0], action_space=envs.action_spaces[0], hidden_size=512, goal_sensor_uuid=env_configs[0].TASK.GOAL_SENSOR_UUID, ) actor_critic.to(device) ppo = PPO( actor_critic=actor_critic, clip_param=0.1, ppo_epoch=4, num_mini_batch=32, value_loss_coef=0.5, entropy_coef=0.01, lr=2.5e-4, eps=1e-5, max_grad_norm=0.5, ) ppo.load_state_dict(ckpt["state_dict"]) actor_critic = ppo.actor_critic observations = envs.reset() batch = batch_obs(observations) for sensor in batch: batch[sensor] = batch[sensor].to(device) episode_rewards = torch.zeros(envs.num_envs, 1, device=device) episode_spls = torch.zeros(envs.num_envs, 1, device=device) episode_success = torch.zeros(envs.num_envs, 1, device=device) episode_counts = torch.zeros(envs.num_envs, 1, device=device) current_episode_reward = torch.zeros(envs.num_envs, 1, device=device) test_recurrent_hidden_states = torch.zeros(args.num_processes, args.hidden_size, device=device) not_done_masks = torch.zeros(args.num_processes, 1, device=device) while episode_counts.sum() < args.count_test_episodes: with torch.no_grad(): _, actions, _, test_recurrent_hidden_states = actor_critic.act( batch, test_recurrent_hidden_states, not_done_masks, deterministic=False, ) outputs = envs.step([a[0].item() for a in actions]) observations, rewards, dones, infos = [list(x) for x in zip(*outputs)] batch = batch_obs(observations) for sensor in batch: batch[sensor] = batch[sensor].to(device) not_done_masks = torch.tensor( [[0.0] if done else [1.0] for done in dones], dtype=torch.float, device=device, ) for i in range(not_done_masks.shape[0]): if not_done_masks[i].item() == 0: episode_spls[i] += infos[i]["roomnavmetric"] if infos[i]["roomnavmetric"] > 0: episode_success[i] += 1 rewards = torch.tensor(rewards, dtype=torch.float, device=device).unsqueeze(1) current_episode_reward += rewards episode_rewards += (1 - not_done_masks) * current_episode_reward episode_counts += 1 - not_done_masks current_episode_reward *= not_done_masks episode_reward_mean = (episode_rewards / episode_counts).mean().item() episode_spl_mean = (episode_spls / episode_counts).mean().item() episode_success_mean = (episode_success / episode_counts).mean().item() print("Average episode reward: {:.6f}".format(episode_reward_mean)) print("Average episode success: {:.6f}".format(episode_success_mean)) print("Average episode spl: {:.6f}".format(episode_spl_mean))
def main(): parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, required=True) parser.add_argument("--sim-gpu-id", type=int, required=True) parser.add_argument("--pth-gpu-id", type=int, required=True) parser.add_argument("--num-processes", type=int, required=True) parser.add_argument("--hidden-size", type=int, default=512) parser.add_argument("--count-test-episodes", type=int, default=100) parser.add_argument( "--sensors", type=str, default="DEPTH_SENSOR", help="comma separated string containing different" "sensors to use, currently 'RGB_SENSOR' and" "'DEPTH_SENSOR' are supported", ) parser.add_argument( "--task-config", type=str, default="configs/tasks/pointnav.yaml", help="path to config yaml containing information about task", ) cmd_line_inputs = [ "--model-path", "/home/bruce/NSERC_2019/habitat-api/data/checkpoints/depth.pth", "--sim-gpu-id", "0", "--pth-gpu-id", "0", "--num-processes", "1", "--count-test-episodes", "100", "--task-config", "configs/tasks/pointnav.yaml", ] args = parser.parse_args(cmd_line_inputs) device = torch.device("cuda:{}".format(args.pth_gpu_id)) env_configs = [] baseline_configs = [] for _ in range(args.num_processes): config_env = get_config(config_paths=args.task_config) config_env.defrost() config_env.DATASET.SPLIT = "val" agent_sensors = args.sensors.strip().split(",") for sensor in agent_sensors: assert sensor in ["RGB_SENSOR", "DEPTH_SENSOR"] config_env.SIMULATOR.AGENT_0.SENSORS = agent_sensors config_env.freeze() env_configs.append(config_env) config_baseline = cfg_baseline() baseline_configs.append(config_baseline) assert len(baseline_configs) > 0, "empty list of datasets" envs = habitat.VectorEnv( make_env_fn=make_env_fn, env_fn_args=tuple( tuple(zip(env_configs, baseline_configs, range(args.num_processes))) ), ) ckpt = torch.load(args.model_path, map_location=device) actor_critic = Policy( observation_space=envs.observation_spaces[0], action_space=envs.action_spaces[0], hidden_size=512, goal_sensor_uuid="pointgoal", ) actor_critic.to(device) ppo = PPO( actor_critic=actor_critic, clip_param=0.1, ppo_epoch=4, num_mini_batch=32, value_loss_coef=0.5, entropy_coef=0.01, lr=2.5e-4, eps=1e-5, max_grad_norm=0.5, ) ppo.load_state_dict(ckpt["state_dict"]) actor_critic = ppo.actor_critic observations = envs.reset() batch = batch_obs(observations) for sensor in batch: batch[sensor] = batch[sensor].to(device) test_recurrent_hidden_states = torch.zeros( args.num_processes, args.hidden_size, device=device ) not_done_masks = torch.zeros(args.num_processes, 1, device=device) def transform_callback(data): nonlocal actor_critic nonlocal batch nonlocal not_done_masks nonlocal test_recurrent_hidden_states global flag global t_prev_update global observation if flag == 2: observation["depth"] = np.reshape(data.data[0:-2], (256, 256, 1)) observation["pointgoal"] = data.data[-2:] flag = 1 return pointgoal_received = data.data[-2:] translate_amount = 0.25 # meters rotate_amount = 0.174533 # radians isrotated = ( rotate_amount * 0.95 <= abs(pointgoal_received[1] - observation["pointgoal"][1]) <= rotate_amount * 1.05 ) istimeup = (time.time() - t_prev_update) >= 4 # print('istranslated is '+ str(istranslated)) # print('isrotated is '+ str(isrotated)) # print('istimeup is '+ str(istimeup)) if isrotated or istimeup: vel_msg = Twist() vel_msg.linear.x = 0 vel_msg.linear.y = 0 vel_msg.linear.z = 0 vel_msg.angular.x = 0 vel_msg.angular.y = 0 vel_msg.angular.z = 0 pub_vel.publish(vel_msg) time.sleep(0.2) print("entered update step") # cv2.imshow("Depth", observation['depth']) # cv2.waitKey(100) observation["depth"] = np.reshape(data.data[0:-2], (256, 256, 1)) observation["pointgoal"] = data.data[-2:] batch = batch_obs([observation]) for sensor in batch: batch[sensor] = batch[sensor].to(device) if flag == 1: not_done_masks = torch.tensor([0.0], dtype=torch.float, device=device) flag = 0 else: not_done_masks = torch.tensor([1.0], dtype=torch.float, device=device) _, actions, _, test_recurrent_hidden_states = actor_critic.act( batch, test_recurrent_hidden_states, not_done_masks, deterministic=True ) action_id = actions.item() print( "observation received to produce action_id is " + str(observation["pointgoal"]) ) print("action_id from net is " + str(actions.item())) t_prev_update = time.time() vel_msg = Twist() vel_msg.linear.x = 0 vel_msg.linear.y = 0 vel_msg.linear.z = 0 vel_msg.angular.x = 0 vel_msg.angular.y = 0 vel_msg.angular.z = 0 if action_id == 0: vel_msg.linear.x = 0.25 / 4 pub_vel.publish(vel_msg) elif action_id == 1: vel_msg.angular.z = 10 / 180 * 3.1415926 pub_vel.publish(vel_msg) elif action_id == 2: vel_msg.angular.z = -10 / 180 * 3.1415926 pub_vel.publish(vel_msg) else: pub_vel.publish(vel_msg) sub.unregister() print("NN finished navigation task") sub = rospy.Subscriber( "depth_and_pointgoal", numpy_msg(Floats), transform_callback, queue_size=1 ) rospy.spin()
def eval_checkpoint(checkpoint_path, args, writer, cur_ckpt_idx=0): env_configs = [] baseline_configs = [] device = torch.device("cuda", args.pth_gpu_id) for _ in range(args.num_processes): config_env = get_config(config_paths=args.task_config) config_env.defrost() config_env.DATASET.SPLIT = "val" agent_sensors = args.sensors.strip().split(",") for sensor in agent_sensors: assert sensor in ["RGB_SENSOR", "DEPTH_SENSOR"] config_env.SIMULATOR.AGENT_0.SENSORS = agent_sensors if args.video_option: config_env.TASK.MEASUREMENTS.append("TOP_DOWN_MAP") config_env.TASK.MEASUREMENTS.append("COLLISIONS") config_env.freeze() env_configs.append(config_env) config_baseline = cfg_baseline() baseline_configs.append(config_baseline) assert len(baseline_configs) > 0, "empty list of datasets" envs = habitat.VectorEnv( make_env_fn=make_env_fn, env_fn_args=tuple( tuple( zip(env_configs, baseline_configs, range(args.num_processes)) ) ), ) ckpt = torch.load(checkpoint_path, map_location=device) actor_critic = Policy( observation_space=envs.observation_spaces[0], action_space=envs.action_spaces[0], hidden_size=512, goal_sensor_uuid=env_configs[0].TASK.GOAL_SENSOR_UUID, ) actor_critic.to(device) ppo = PPO( actor_critic=actor_critic, clip_param=0.1, ppo_epoch=4, num_mini_batch=32, value_loss_coef=0.5, entropy_coef=0.01, lr=2.5e-4, eps=1e-5, max_grad_norm=0.5, ) ppo.load_state_dict(ckpt["state_dict"]) actor_critic = ppo.actor_critic observations = envs.reset() batch = batch_obs(observations) for sensor in batch: batch[sensor] = batch[sensor].to(device) episode_rewards = torch.zeros(envs.num_envs, 1, device=device) episode_spls = torch.zeros(envs.num_envs, 1, device=device) episode_success = torch.zeros(envs.num_envs, 1, device=device) episode_counts = torch.zeros(envs.num_envs, 1, device=device) current_episode_reward = torch.zeros(envs.num_envs, 1, device=device) test_recurrent_hidden_states = torch.zeros( args.num_processes, args.hidden_size, device=device ) not_done_masks = torch.zeros(args.num_processes, 1, device=device) stats_episodes = set() rgb_frames = None if args.video_option: rgb_frames = [[]] * args.num_processes os.makedirs(args.video_dir, exist_ok=True) while episode_counts.sum() < args.count_test_episodes: current_episodes = envs.current_episodes() with torch.no_grad(): _, actions, _, test_recurrent_hidden_states = actor_critic.act( batch, test_recurrent_hidden_states, not_done_masks, deterministic=False, ) outputs = envs.step([a[0].item() for a in actions]) observations, rewards, dones, infos = [list(x) for x in zip(*outputs)] batch = batch_obs(observations) for sensor in batch: batch[sensor] = batch[sensor].to(device) not_done_masks = torch.tensor( [[0.0] if done else [1.0] for done in dones], dtype=torch.float, device=device, ) for i in range(not_done_masks.shape[0]): if not_done_masks[i].item() == 0: episode_spls[i] += infos[i]["spl"] if infos[i]["spl"] > 0: episode_success[i] += 1 rewards = torch.tensor( rewards, dtype=torch.float, device=device ).unsqueeze(1) current_episode_reward += rewards episode_rewards += (1 - not_done_masks) * current_episode_reward episode_counts += 1 - not_done_masks current_episode_reward *= not_done_masks next_episodes = envs.current_episodes() envs_to_pause = [] n_envs = envs.num_envs for i in range(n_envs): if next_episodes[i].episode_id in stats_episodes: envs_to_pause.append(i) # episode ended if not_done_masks[i].item() == 0: stats_episodes.add(current_episodes[i].episode_id) if args.video_option: generate_video( args, rgb_frames[i], current_episodes[i].episode_id, cur_ckpt_idx, infos[i]["spl"], writer, ) rgb_frames[i] = [] # episode continues elif args.video_option: frame = observations_to_image(observations[i], infos[i]) rgb_frames[i].append(frame) # stop tracking ended episodes if they exist if len(envs_to_pause) > 0: state_index = list(range(envs.num_envs)) for idx in reversed(envs_to_pause): state_index.pop(idx) envs.pause_at(idx) # indexing along the batch dimensions test_recurrent_hidden_states = test_recurrent_hidden_states[ :, state_index ] not_done_masks = not_done_masks[state_index] current_episode_reward = current_episode_reward[state_index] for k, v in batch.items(): batch[k] = v[state_index] if args.video_option: rgb_frames = [rgb_frames[i] for i in state_index] episode_reward_mean = (episode_rewards / episode_counts).mean().item() episode_spl_mean = (episode_spls / episode_counts).mean().item() episode_success_mean = (episode_success / episode_counts).mean().item() logger.info("Average episode reward: {:.6f}".format(episode_reward_mean)) logger.info("Average episode success: {:.6f}".format(episode_success_mean)) logger.info("Average episode SPL: {:.6f}".format(episode_spl_mean)) writer.add_scalars( "eval_reward", {"average reward": episode_reward_mean}, cur_ckpt_idx ) writer.add_scalars( "eval_SPL", {"average SPL": episode_spl_mean}, cur_ckpt_idx ) writer.add_scalars( "eval_success", {"average success": episode_success_mean}, cur_ckpt_idx )
env_configs = [] baseline_configs = [] for _ in range(1): config_env = get_config(config_paths="/home/bruce/NSERC_2019/habitat-api/configs/tasks/pointnav.yaml" ) config_env.defrost() config_env.DATASET.SPLIT = "val" agent_sensors = "RGB_SENSOR,DEPTH_SENSOR".strip().split(",") for sensor in agent_sensors: assert sensor in ["RGB_SENSOR", "DEPTH_SENSOR"] config_env.SIMULATOR.AGENT_0.SENSORS = agent_sensors config_env.freeze() env_configs.append(config_env) config_baseline = cfg_baseline() baseline_configs.append(config_baseline) assert len(baseline_configs) > 0, "empty list of datasets" envs = habitat.VectorEnv( make_env_fn=make_env_fn, env_fn_args=tuple( tuple( zip(env_configs, baseline_configs, range(1)) ) ), ) ckpt = torch.load("/home/bruce/NSERC_2019/habitat-api/data/checkpoints/ckpt.2.pth", map_location=device)
def eval_checkpoint(checkpoint_path, args, writer, cur_ckpt_idx=0): env_configs = [] baseline_configs = [] device = torch.device("cuda", args.pth_gpu_id) for _ in range(args.num_processes): config_env = get_config(config_paths=args.task_config) config_env.defrost() config_env.DATASET.SPLIT = "val" agent_sensors = args.sensors.strip().split(",") for sensor in agent_sensors: assert sensor in ["RGB_SENSOR", "DEPTH_SENSOR"] config_env.SIMULATOR.AGENT_0.SENSORS = agent_sensors if args.video_option: config_env.TASK.MEASUREMENTS.append("TOP_DOWN_MAP") config_env.TASK.MEASUREMENTS.append("COLLISIONS") config_env.freeze() env_configs.append(config_env) config_baseline = cfg_baseline() baseline_configs.append(config_baseline) assert len(baseline_configs) > 0, "empty list of datasets" envs = habitat.VectorEnv( make_env_fn=make_env_fn, env_fn_args=tuple( tuple(zip(env_configs, baseline_configs, range(args.num_processes)))), ) ckpt = torch.load(checkpoint_path, map_location=device) actor_critic = Policy( observation_space=envs.observation_spaces[0], action_space=envs.action_spaces[0], hidden_size=512, goal_sensor_uuid=env_configs[0].TASK.GOAL_SENSOR_UUID, ) actor_critic.to(device) ppo = PPO( actor_critic=actor_critic, clip_param=0.1, ppo_epoch=4, num_mini_batch=32, value_loss_coef=0.5, entropy_coef=0.01, lr=2.5e-4, eps=1e-5, max_grad_norm=0.5, ) ppo.load_state_dict(ckpt["state_dict"]) actor_critic = ppo.actor_critic observations = envs.reset() batch = batch_obs(observations) for sensor in batch: batch[sensor] = batch[sensor].to(device) current_episode_reward = torch.zeros(envs.num_envs, 1, device=device) test_recurrent_hidden_states = torch.zeros(args.num_processes, args.hidden_size, device=device) not_done_masks = torch.zeros(args.num_processes, 1, device=device) stats_episodes = dict() # dict of dicts that stores stats per episode while episode_counts.sum() < args.count_test_episodes: # test_recurrent_hidden_states_list.append(test_recurrent_hidden_states) # pickle_out = open("hab_recurrent_states.pickle","wb") # pickle.dump(test_recurrent_hidden_states_list, pickle_out) # pickle_out.close() # obs_list.append(observations[0]) # pickle_out = open("hab_obs_list.pickle","wb") # pickle.dump(obs_list, pickle_out) # pickle_out.close() # mask_list.append(not_done_masks) # pickle_out = open("hab_mask_list.pickle","wb") # pickle.dump(mask_list, pickle_out) # pickle_out.close() with torch.no_grad(): _, actions, _, test_recurrent_hidden_states = actor_critic.act( batch, test_recurrent_hidden_states, not_done_masks, deterministic=True, ) print("action_id is " + str(actions.item())) print('point goal is ' + str(observations[0]['pointgoal'])) outputs = envs.step([a[0].item() for a in actions]) observations, rewards, dones, infos = [list(x) for x in zip(*outputs)] #for visualizing where robot is going #cv2.imshow("RGB", transform_rgb_bgr(observations[0]["rgb"])) cv2.imshow("Depth", observations[0]["depth"]) cv2.waitKey(100) time.sleep(0.2) batch = batch_obs(observations) for sensor in batch: batch[sensor] = batch[sensor].to(device) not_done_masks = torch.tensor( [[0.0] if done else [1.0] for done in dones], dtype=torch.float, device=device, ) rewards = torch.tensor(rewards, dtype=torch.float, device=device).unsqueeze(1) current_episode_reward += rewards next_episodes = envs.current_episodes() envs_to_pause = [] n_envs = envs.num_envs for i in range(n_envs): if ( next_episodes[i].scene_id, next_episodes[i].episode_id, ) in stats_episodes: envs_to_pause.append(i) # episode ended if not_done_masks[i].item() == 0: episode_stats = dict() episode_stats["spl"] = infos[i]["spl"] episode_stats["success"] = int(infos[i]["spl"] > 0) episode_stats["reward"] = current_episode_reward[i].item() current_episode_reward[i] = 0 # use scene_id + episode_id as unique id for storing stats stats_episodes[( current_episodes[i].scene_id, current_episodes[i].episode_id, )] = episode_stats if args.video_option: generate_video( args, rgb_frames[i], current_episodes[i].episode_id, cur_ckpt_idx, infos[i]["spl"], writer, ) rgb_frames[i] = [] # episode continues elif args.video_option: frame = observations_to_image(observations[i], infos[i]) rgb_frames[i].append(frame) # pausing envs with no new episode if len(envs_to_pause) > 0: state_index = list(range(envs.num_envs)) for idx in reversed(envs_to_pause): state_index.pop(idx) envs.pause_at(idx) # indexing along the batch dimensions test_recurrent_hidden_states = test_recurrent_hidden_states[ state_index] not_done_masks = not_done_masks[state_index] current_episode_reward = current_episode_reward[state_index] for k, v in batch.items(): batch[k] = v[state_index] if args.video_option: rgb_frames = [rgb_frames[i] for i in state_index] aggregated_stats = dict() for stat_key in next(iter(stats_episodes.values())).keys(): aggregated_stats[stat_key] = sum( [v[stat_key] for v in stats_episodes.values()]) num_episodes = len(stats_episodes) episode_reward_mean = aggregated_stats["reward"] / num_episodes episode_spl_mean = aggregated_stats["spl"] / num_episodes episode_success_mean = aggregated_stats["success"] / num_episodes logger.info("Average episode reward: {:.6f}".format(episode_reward_mean)) logger.info("Average episode success: {:.6f}".format(episode_success_mean)) logger.info("Average episode SPL: {:.6f}".format(episode_spl_mean)) writer.add_scalars("eval_reward", {"average reward": episode_reward_mean}, cur_ckpt_idx) writer.add_scalars("eval_SPL", {"average SPL": episode_spl_mean}, cur_ckpt_idx) writer.add_scalars("eval_success", {"average success": episode_success_mean}, cur_ckpt_idx)