Exemple #1
0
def load_config(args):
    """
    Given the arguemnts, load and initialize the configs.
    Args:
        args (argument): arguments includes `shard_id`, `num_shards`,
            `init_method`, `cfg_file`, and `opts`.
    """
    # Setup cfg.
    cfg = get_cfg()
    # Load config from cfg.
    if args.cfg_file is not None:
        cfg.merge_from_file(args.cfg_file)
    # Load config from command line, overwrite config from opts.
    if args.opts is not None:
        cfg.merge_from_list(args.opts)

    # Inherit parameters from args.
    if hasattr(args, "num_shards") and hasattr(args, "shard_id"):
        cfg.NUM_SHARDS = args.num_shards
        cfg.SHARD_ID = args.shard_id
    if hasattr(args, "rng_seed"):
        cfg.RNG_SEED = args.rng_seed
    if hasattr(args, "output_dir"):
        cfg.OUTPUT_DIR = args.output_dir

    # Create the checkpoint dir.
    cu.make_checkpoint_dir(cfg.OUTPUT_DIR)
    return cfg
def test_dataset():
    from config.defaults import get_cfg
    cfg = get_cfg()
    dataset = ExampleDataset(cfg, train=True)
    x, y = dataset[4]
    print(x.shape)
    print(y)
Exemple #3
0
def main(args):
    cfg = get_cfg()
    if args.cfg_file:
        cfg.merge_from_file(args.cfg_file)
    if args.opts is not None:
        cfg.merge_from_list(args.opts)
    cfg.freeze()

    solver = Solver(cfg)

    if cfg.MODE in ["train", "training"]:
        solver.train(cfg.TRAIN.NUM_EPOCHS)
    elif cfg.MODE in ['validate', 'validation']:
        solver.evaluate(split=cfg.VAL.SPLIT)
    elif cfg.MODE in ['test', 'testing']:
        solver.inference(split=cfg.TEST.SPLIT, batch_size=cfg.TEST.BATCH_SIZE)
Exemple #4
0
def load_config(args):
    """
    Given the arguemnts, load and initialize the configs.
    Args:
        args (argument): arguments includes `shard_id`, `num_shards`,
            `init_method`, `cfg_file`, and `opts`.
    """
    # Setup cfg.
    cfg = get_cfg()
    # Load config from cfg.
    if args.cfg_file is not None:
        cfg.merge_from_file(args.cfg_file)
    # Load config from command line, overwrite config from opts.
    if args.opts is not None:
        cfg.merge_from_list(args.opts)
    if args.test:
        cfg.TRAIN.ENABLE = False
        cfg.TEST.ENABLE = True

    # Inherit parameters from args.
    if hasattr(args, "num_shards") and hasattr(args, "shard_id"):
        cfg.NUM_SHARDS = args.num_shards
        cfg.SHARD_ID = args.shard_id
    if hasattr(args, "rng_seed"):
        cfg.RNG_SEED = args.rng_seed
    if hasattr(args, "output_dir"):
        cfg.OUTPUT_DIR = args.output_dir

    cfg_file_name = args.cfg_file.split('/')[-1].split('.yaml')[0]
    cfg.LOG_NAME = cfg_file_name + '.log'
    cfg.OUTPUT_DIR = os.path.join(cfg.OUTPUT_DIR, cfg_file_name)
    cfg.TEST.OUTPUT_DIR = os.path.join(cfg.TEST.OUTPUT_DIR, cfg_file_name)

    # Create the checkpoint dir.
    cu.make_checkpoint_dir(cfg.OUTPUT_DIR)
    return cfg
            fuser_input = env_agent_cat_features[:,
                                                 smpl_bgn:smpl_end].contiguous(
                                                 )
            fuser_input = fuser_input.view(-1, 2, ft_sz).permute(1, 0, 2)

            fuser_output = self.agents_environment_fuser(fuser_input)
            fuser_output = torch.mean(fuser_output, dim=0)
            context_features[:, smpl_bgn:smpl_end] = fuser_output.view(
                bsz, -1, ft_sz)

        return self.event_detector(context_features.permute(0, 2, 1))


if __name__ == '__main__':
    cfg = get_cfg()
    model = EventDetection(cfg)

    batch_size = 1
    temporal_dim = 100
    box_dim = 4
    feature_dim = 2304

    env_input = torch.randn(batch_size, temporal_dim, feature_dim)
    agent_input = torch.randn(batch_size, temporal_dim, box_dim, feature_dim)
    agent_padding_mask = torch.tensor(
        np.random.randint(0, 1, (batch_size, temporal_dim, box_dim))).bool()

    a, b, c = model(env_input, agent_input, agent_padding_mask)
    print(a.shape, b.shape, c.shape)