from config.defaults import Experiment, SiMVC, CNN, DDC, Fusion, Loss, Dataset, CoMVC, Optimizer coil = Experiment( dataset_config=Dataset(name="coil"), model_config=SiMVC( backbone_configs=( CNN(input_size=(1, 128, 128)), CNN(input_size=(1, 128, 128)), CNN(input_size=(1, 128, 128)), ), fusion_config=Fusion(method="weighted_mean", n_views=3), cm_config=DDC(n_clusters=20), loss_config=Loss( funcs="ddc_1|ddc_2|ddc_3", ), optimizer_config=Optimizer() ), n_epochs=100, ) coil_contrast = Experiment( dataset_config=Dataset(name="coil"), model_config=CoMVC( backbone_configs=( CNN(input_size=(1, 128, 128)), CNN(input_size=(1, 128, 128)), CNN(input_size=(1, 128, 128)), ), fusion_config=Fusion(method="weighted_mean", n_views=3), projector_config=None,
from config.defaults import Experiment, Dataset, SiMVC, MLP, DDC, Fusion, Loss, CoMVC blobs_overlap = Experiment( dataset_config=Dataset(name="blobs_overlap"), model_config=SiMVC( backbone_configs=( MLP(layers=[32, 32, 32], input_size=(2, )), MLP(layers=[32, 32, 32], input_size=(2, )), ), fusion_config=Fusion(method="weighted_mean", n_views=2), cm_config=DDC(n_clusters=3), loss_config=Loss(funcs="ddc_1|ddc_2|ddc_3", ), ), n_runs=1, n_epochs=10, ) blobs_overlap_contrast = Experiment( dataset_config=Dataset(name="blobs_overlap"), model_config=CoMVC(backbone_configs=( MLP(layers=[32, 32, 32], input_size=(2, )), MLP(layers=[32, 32, 32], input_size=(2, )), ), fusion_config=Fusion(method="weighted_mean", n_views=2), projector_config=None, cm_config=DDC(n_clusters=3), loss_config=Loss(funcs="ddc_1|ddc_2|ddc_3|contrast", )), n_runs=1, ) blobs_overlap_5 = Experiment(
from config.defaults import Experiment, Dataset, SiMVC, DDC, Fusion, MLP, Loss, CoMVC, Optimizer voc = Experiment( dataset_config=Dataset(name="voc"), model_config=SiMVC( backbone_configs=( MLP(input_size=(512,)), MLP(input_size=(399,)), ), fusion_config=Fusion(method="weighted_mean", n_views=2), cm_config=DDC(n_clusters=20), loss_config=Loss( funcs="ddc_1|ddc_2|ddc_3", ), optimizer_config=Optimizer(learning_rate=1e-3, scheduler_step_size=50, scheduler_gamma=0.1) ), ) voc_contrast = Experiment( dataset_config=Dataset(name="voc"), model_config=CoMVC( backbone_configs=( MLP(input_size=(512,)), MLP(input_size=(399,)), ), projector_config=None, fusion_config=Fusion(method="weighted_mean", n_views=2), cm_config=DDC(n_clusters=20), loss_config=Loss( funcs="ddc_1|ddc_2|ddc_3|contrast", ),
from config.defaults import Experiment, SiMVC, DDC, Fusion, MLP, Loss, Dataset, CoMVC, Optimizer ccv = Experiment( dataset_config=Dataset(name="ccv"), model_config=SiMVC(backbone_configs=( MLP(input_size=(5000, )), MLP(input_size=(5000, )), MLP(input_size=(4000, )), ), fusion_config=Fusion(method="weighted_mean", n_views=3), cm_config=DDC(n_clusters=20), loss_config=Loss(funcs="ddc_1|ddc_2|ddc_3", ), optimizer_config=Optimizer()), ) ccv_contrast = Experiment( dataset_config=Dataset(name="ccv"), model_config=CoMVC(backbone_configs=( MLP(input_size=(5000, )), MLP(input_size=(5000, )), MLP(input_size=(4000, )), ), fusion_config=Fusion(method="weighted_mean", n_views=3), projector_config=None, cm_config=DDC(n_clusters=20), loss_config=Loss(funcs="ddc_1|ddc_2|ddc_3|contrast", delta=20.0), optimizer_config=Optimizer(scheduler_step_size=50, scheduler_gamma=0.1)), n_epochs=100)
from config.defaults import Experiment, Dataset, SiMVC, DDC, Fusion, MLP, Loss, CoMVC, Optimizer rgbd = Experiment( dataset_config=Dataset(name="rgbd"), model_config=SiMVC( backbone_configs=( MLP(input_size=(2048,)), MLP(input_size=(300,)), ), fusion_config=Fusion(method="weighted_mean", n_views=2), cm_config=DDC(n_clusters=13), loss_config=Loss( funcs="ddc_1|ddc_2|ddc_3", ) ), ) rgbd_contrast = Experiment( dataset_config=Dataset(name="rgbd"), model_config=CoMVC( backbone_configs=( MLP(input_size=(2048,)), MLP(input_size=(300,)), ), fusion_config=Fusion(method="weighted_mean", n_views=2), projector_config=None, cm_config=DDC(n_clusters=13), loss_config=Loss( funcs="ddc_1|ddc_2|ddc_3|contrast", ),
from config.defaults import Experiment, SiMVC, CNN, DDC, Fusion, Loss, Dataset, CoMVC, Optimizer mnist = Experiment( dataset_config=Dataset(name="mnist_mv"), model_config=SiMVC( backbone_configs=( CNN(input_size=(1, 28, 28)), CNN(input_size=(1, 28, 28)), ), fusion_config=Fusion(method="weighted_mean", n_views=2), cm_config=DDC(n_clusters=10), loss_config=Loss( funcs="ddc_1|ddc_2|ddc_3", ), optimizer_config=Optimizer() ), ) mnist_contrast = Experiment( dataset_config=Dataset(name="mnist_mv"), model_config=CoMVC( backbone_configs=( CNN(input_size=(1, 28, 28)), CNN(input_size=(1, 28, 28)), ), fusion_config=Fusion(method="weighted_mean", n_views=2), projector_config=None, cm_config=DDC(n_clusters=10), loss_config=Loss(