"k": 3, "layers": 20, "graph_w": 256, "concat_layers": [3, 5, 7, 10, 13, 16, 20], "lin_ws": [64, 64] } config.data_path = "/data/WatChMaL/data/IWCDmPMT_4pi_fulltank_test/split_h5/IWCDmPMT_4pi_fulltank_test_graphnet_trainval.h5" config.indices_file = "/data/WatChMaL/data/IWCDmPMT_4pi_fulltank_test/split_h5/IWCDmPMT_4pi_fulltank_test_graphnet_trainval_idxs.npz" config.edge_index_pickle = "/data/WatChMaL/graphnets/visualization/mpmt_edges_dict.pkl" config.dump_path = "/data/WatChMaL/graphnets/GraphNets/dump/" + config.model_name config.num_data_workers = 0 # Sometime crashes if we do multiprocessing config.device = 'gpu' config.gpu_list = [6] config.optimizer = "SGD" config.optimizer_kwargs = { "lr": 0.01, "weight_decay": 1e-3, "momentum": 0.9, "nesterov": True } config.scheduler_kwargs = { "mode": "min", "min_lr": 1e-6, "patience": 1, "verbose": True }
config.model_name = "Pointnet" config.cols_to_use = [0, 1, 2, 3] # may want to change: feat_size, layer_dims, etc. config.model_kwargs = { "in_channels": len(config.cols_to_use), "num_classes": 3 } config.data_path = "/data/WatChMaL/data/pointnet/splits/pointnet_trainval.h5" config.indices_file = "/data/WatChMaL/data/pointnet/splits/pointnet_trainval_idxs.npz" config.dump_path = "/home/dgreen/training_outputs/" config.num_data_workers = 0 # Sometime crashes if we do multiprocessing config.device = 'gpu' config.gpu_list = [7] config.optimizer = "SGD" config.optimizer_kwargs = { "lr": 0.01, "weight_decay": 1e-3, "momentum": 0.9, "nesterov": True } config.scheduler_kwargs = { "mode": "min", "min_lr": 1e-6, "patience": 1, "verbose": True }
## Model config.model_name = "gcn_kipf" config.model_kwargs = {"w1": 4, "w2": 8, "w3": 16} ## Data paths config.data_path = "/app/test_data/split_h5/IWCDmPMT_4pi_fulltank_test_graphnet_trainval.h5" config.indices_file = "/app/test_data/split_h5/IWCDmPMT_4pi_fulltank_test_graphnet_trainval_idxs.npz" config.edge_index_pickle = "/app/GraphNets/metadata/edges_dict.pkl" ## Log location config.dump_path = "/app/GraphNets/dump/gcn" ## Computer Parameters config.num_data_workers = 0 # Sometime crashes if we do multiprocessing config.device = 'gpu' config.gpu_list = [0] # Optimizer Parameters config.optimizer = "Adam" config.optimizer_kwargs = {"lr": 0.01, "weight_decay": 5e-4} ## Training parameters config.batch_size = 32 config.epochs = 1 ## Logging parameters for training config.report_interval = 10 # 100 config.num_val_batches = 32 config.valid_interval = 100 # 10000 ## Validating parameters
## Model config.model_name = "gcn_kipf" config.model_kwargs = {"w1":10, "w2":12, "w3":8} ## Data paths config.data_path = "/fast_scratch/NeutronGNN/iwcd_mpmt_shorttank_neutrongnn_trainval.h5" config.indices_file = "/fast_scratch/NeutronGNN/iwcd_mpmt_shorttank_neutrongnn_trainval_idxs.npz" ## Log location config.dump_path = "/fast_scratch/NeutronGNN/dump/" + config.model_name ## Computer parameters config.num_data_workers = 0 # Sometime crashes if we do multiprocessing config.device = 'gpu' config.gpu_list = [1] ## Optimizer parameters config.optimizer = "Adam" config.optimizer_kwargs = {"lr":1e-3} #config.optimizer_kwargs = {"lr":0.01, "weight_decay":5e-4} ## Scheduler parameters config.scheduler_kwargs = {"mode":"min", "min_lr":1e-6, "patience":1, "verbose":True} config.scheduler_step = 190 ## Training parameters config.batch_size = 64 config.epochs = 5 ## Logging parameters for training