Exemple #1
0
def tilePoints(pts, gridstart, gridstep, gridlen):
    """
    points sorted by tile
    allows for fast access of points within certain set of tiles
    returns: pts array reordered (copy), integer matrix of pts-indices for each tile
    """
    pts_grnd = floor(pts[:,:2]/gridstep) - gridstart
    include = np.all(pts_grnd >= 0, axis=1) & np.all(pts_grnd < gridlen, axis=1)
    grndidx = gridlen[1] * pts_grnd[include,0] + pts_grnd[include,1]
    grndorder = np.argsort(grndidx)
    tileidxs = np.searchsorted(grndidx[grndorder], range(gridlen[0]*gridlen[1]+1))
    #tileidxs = tileidxs.reshape(grndlen)
    return pts[include][grndorder], tileidxs
Exemple #2
0
def getGround(pts):
    ntx, nty = grndlen
    # divide points by tiles
    ntiles = ntx * nty
    tile_range = range(ntiles)

    # select points within relevant region
    include = pts[:, 2] - (abs(
        pts[:, 1]) + pts[:, 0]) * .1 < cutoff_height * cutoff_divider_constant
    include &= pts[:, 0] > grndstart[0]
    include &= pts[:, 1] > grndstart[1]
    include &= pts[:, 0] < (grndstart[0] + ntx) * grndstep[0] * 2
    include &= pts[:, 1] < (grndstart[1] + nty) * grndstep[1] * 2
    # was subsampling by 2 before
    pts = pts[include][::1]

    quantized_xy = floor(pts[..., :2] / grndstep) - grndstart
    # find supertile indices for first layer
    quantized_layer1 = quantized_xy // 2
    pt_tiles1 = quantized_layer1[:, 0] * nty // 2 + quantized_layer1[:, 1]
    pts_reorder1 = np.argsort(pt_tiles1)
    tile_idxs1 = np.searchsorted(pt_tiles1[pts_reorder1],
                                 range(ntiles // 4 + 1))
    # find supertile indices for second layer
    quantized_layer2 = (quantized_xy - 1) // 2
    pt_tiles2 = quantized_layer2[:, 0] * (nty // 2 - 1) + quantized_layer2[:,
                                                                           1]
    pts_reorder2 = np.argsort(pt_tiles2)
    tile_idxs2 = np.searchsorted(pt_tiles2[pts_reorder2],
                                 range((ntx // 2 - 1) * (nty // 2 - 1) + 1))
    # find plane for each supertile
    # supertiles are indexing by the tile that is their bottom left corner
    # note that half the tiles are not bottom left to any supertile
    bottom_left_planes = np.zeros((ntiles, 4))
    bottom_left_success = np.zeros(ntiles, dtype=bool)
    bottom_left_scores = np.zeros(ntiles)
    for tile in tile_range:
        tilex = tile // nty
        tiley = tile % nty
        if tilex % 2 != tiley % 2:  # is not the bottom left of any supertile
            continue
        if tilex == ntx - 1:  # top layer is not bottom left for anything
            continue
        if tiley == nty - 1:
            continue

        if tilex % 2 > 0:  # second layer
            layertile = (tilex - 1) // 2 * (nty // 2 - 1) + (tiley - 1) // 2
            pts_tile = pts[
                pts_reorder2[tile_idxs2[layertile]:tile_idxs2[layertile + 1]]]
        else:  # first layer
            layertile = tilex // 2 * nty // 2 + tiley // 2
            pts_tile = pts[
                pts_reorder1[tile_idxs1[layertile]:tile_idxs1[layertile + 1]]]

        if pts_tile.shape[0] < min_npoints:
            continue

        # initialize by trying several flat planes
        minheight = np.min(pts_tile[:, 2])
        maxheight = np.max(pts_tile[:, 2])
        n_bins = int((maxheight - minheight) / init_quantile) + 1
        if n_bins == 1:
            init_height = min(maxheight, minheight + sac_thresh)
        else:
            bincounts, _ = np.histogram(pts_tile[:, 2],
                                        bins=n_bins,
                                        density=False)
            highest_count = max(bincounts)
            # choose the lowest height that has at least half as many points as
            # the most popular height
            chosen_bin = np.where(bincounts > highest_count / 2)[0][0]
            quantile = (maxheight - minheight) / n_bins
            init_height = (chosen_bin + .5) * quantile + minheight
        plane = np.array((0, 0, 1., init_height))

        best_npoints = 0
        best_plane = np.array((0, 0, 1., 0))
        for attempt in range(sac_niter):
            errors = abs(plane[3] - pts_tile.dot(plane[:3]))
            assert not np.any(np.isnan(errors))
            inliers = errors < sac_thresh
            npoints = sum(inliers)
            if npoints > best_npoints:
                best_plane = plane
                best_npoints = npoints
            elif npoints == 0:
                break  # can't work off of no points

            assert pts_tile[inliers].shape[0] > 0
            meanvals = np.mean(pts_tile[inliers], axis=0)
            residuals = pts_tile[inliers] - meanvals
            covmatrix = residuals.T.dot(residuals)
            eigvals, eigvecs = np.linalg.eigh(covmatrix)
            normal = eigvecs[:, np.argmin(eigvals)]
            if normal[2] < 0:
                normal *= -1
            if normal[2] < min_road_normal:  # too steep to be road
                break
            plane = np.append(normal, meanvals.dot(normal))

        plane = best_plane
        bottom_left_planes[tile] = plane
        points_below = sum(plane[3] - pts_tile.dot(plane[:3]) - sac_thresh > 0)
        ratio_below = float(points_below) / pts_tile.shape[0]
        include = ratio_below < min_ratio_below and best_npoints > min_npoints
        if include:
            bottom_left_success[tile] = True
            bottom_left_scores[tile] = best_npoints * (1 - ratio_below)

    # for each tile, determine which of two supertiles is the best fit
    planes = np.zeros((ntx, nty, 4))
    scores = np.zeros((ntx, nty)) + ntx + nty
    for tile in tile_range:
        tilex = tile // nty
        tiley = tile % nty
        if tilex % 2 == tiley % 2:
            # this tile is bottom left of one supertile and top right of another
            temp_score = 0
            if tilex < ntx - 1 and tiley < nty - 1:  # is a bottom left
                if bottom_left_success[tile]:
                    planes[tilex, tiley] = bottom_left_planes[tile]
                    scores[tilex, tiley] = 0
                    temp_score = bottom_left_scores[tile]
            if tilex > 0 and tiley > 0:  # is a top right
                adjtile = tile - nty - 1
                newscore = bottom_left_scores[adjtile]
                if bottom_left_success[adjtile] and newscore > temp_score:
                    planes[tilex, tiley] = bottom_left_planes[adjtile]
                    scores[tilex, tiley] = 0
        else:
            # this tile is bottom right and top left
            temp_score = 0
            if tilex > 0 and tiley < nty - 1:  # is a top left
                adjtile = tile - nty
                if bottom_left_success[adjtile]:
                    planes[tilex, tiley] = bottom_left_planes[adjtile]
                    scores[tilex, tiley] = 0
                    temp_score = bottom_left_scores[adjtile]
            if tilex < ntx - 1 and tiley > 0:  # is a bottom right
                adjtile = tile - 1
                newscore = bottom_left_scores[adjtile]
                if bottom_left_success[adjtile] and newscore > temp_score:
                    planes[tilex, tiley] = bottom_left_planes[adjtile]
                    scores[tilex, tiley] = 0

    # for yet-unfit tiles, determine which tiles to replace with
#    n_support = np.zeros(ntx*nty, dtype=int)
# forward-right pass
    for tile in tile_range:
        # get nearby tiles and scores
        tilex = tile // nty
        tiley = tile % nty
        score = scores[tilex, tiley]
        if tilex == 0 and tiley == 0:
            adjacent_tiles = []
        elif tilex == 0:
            adjacent_tiles = [((tilex, tiley - 1), 1)]
        elif tiley == 0:
            adjacent_tiles = [((tilex - 1, tiley), 1)]
        else:
            adjacent_tiles = [((tilex, tiley - 1), 1), ((tilex - 1, tiley), 1),
                              ((tilex - 1, tiley - 1), 1.5)]
        for adjacent_tile, penalty in adjacent_tiles:
            score2 = scores[adjacent_tile] + penalty
            if score2 < score:
                score = score2
                planes[tilex, tiley] = planes[adjacent_tile]


#                pts_tile = pts[pts_reorder[tile_idxs[tile]:tile_idxs[tile+1]]]
#                errs = pts_tile.dot(planes[adjacent_tile,:3])-planes[adjacent_tile,3]
#                support = sum(abs(errs) < sac_thresh)
#                n_support[tile] = support
#            elif score2 == score:
#                pts_tile = pts[pts_reorder[tile_idxs[tile]:tile_idxs[tile+1]]]
#                errs = pts_tile.dot(planes[adjacent_tile,:3])-planes[adjacent_tile,3]
#                support = sum(abs(errs) < sac_thresh)
#                if support > n_support[tile]:
#                    n_support[tile] = support
#                    planes[tile] = planes[adjacent_tile]
        scores[tilex, tiley] = score
    # backward-left pass
    for tile in tile_range[::-1]:
        # get nearby tiles and scores
        tilex = tile // nty
        tiley = tile % nty
        score = scores[tilex, tiley]
        if tilex == ntx - 1 and tiley == nty - 1:
            adjacent_tiles = []
        elif tilex == ntx - 1:
            adjacent_tiles = [((tilex, tiley + 1), 1)]
        elif tiley == nty - 1:
            adjacent_tiles = [((tilex + 1, tiley), 1)]
        else:
            adjacent_tiles = [((tilex, tiley + 1), 1), ((tilex + 1, tiley), 1),
                              ((tilex + 1, tiley + 1), 1.5)]
        for adjacent_tile, penalty in adjacent_tiles:
            score2 = scores[adjacent_tile] + penalty
            if score2 < score:
                score = score2
                planes[tilex, tiley] = planes[adjacent_tile]
        scores[tilex, tiley] = score

    return planes  #, scores
Exemple #3
0
            subgridend = subgridloc + occupysubgrid.shape
            visibilitysubgrid = visibility[subgridloc[0]:subgridend[0],
                                           subgridloc[1]:subgridend[1]]
            tiles2detectsubgrid = tiles2detectgrid[subgridloc[0]:subgridend[0],
                                                   subgridloc[1]:subgridend[1]]
            objectdetectprobs[objidx] = np.einsum(occupysubgrid, [0, 1],
                                                  visibilitysubgrid, [0, 1],
                                                  tiles2detectsubgrid, [0, 1],
                                                  [])
        else:
            objectdetectprobs[objidx] = 0.  # shouldn't matter...
    assert np.all(objectdetectprobs < 1 + 1e-8)
    objectdetectprobs = np.minimum(objectdetectprobs, 1)
    msmts = []
    for msmt in simmsmts:
        tilex, tiley = floor(msmt[:2] / grndstep).astype(int) - grndstart
        if tiles2detectgrid[tilex, tiley]:  # and not empty[tilex,tiley]:
            msmts.append((msmt[:5], occupancy[tilex, tiley], msmt[5]))
    occupancy *= 1 - visibility * tiles2detectgrid

    # prepare objs/msmts for data association
    nmsmts = len(msmts)
    msmtsprepped = []
    for msmtidx, msmtstuff in enumerate(msmts):
        msmtprepped = soPrepMsmt(msmtstuff)
        msmtsprepped.append(msmtprepped)
    # data association
    for objidx in range(n_objects):
        if not shouldUseObject(objects[objidx]):
            matches[objidx, :nmsmts] = 100
            continue
Exemple #4
0
                                    size=npositivestotal)
    noisecos = np.cos(noiseangles)
    noisesin = np.sin(noiseangles)
    npositives = 0
    for posidx in xrange(npositivestotal):
        pts = pospoints[posidxs[posidx,
                                0]:posidxs[posidx,
                                           1]].copy()  # + noises[posidx]
        if posidxs[posidx, 2]:
            ptsx = pts[:, 0] * noisecos[posidx] - pts[:, 1] * noisesin[posidx]
            pts[:,
                1] = pts[:, 0] * noisesin[posidx] + pts[:,
                                                        1] * noisecos[posidx]
            pts[:, 0] = ptsx
            pts += noises[posidx]
        pts = floor(pts / anchorstep) - anchorstart
        includepts = np.all(pts >= 0, axis=1) & np.all(pts < anchorlen, axis=1)
        pts = pts[includepts]
        positivesample[:] = False
        positivesample[pts[:, 0], pts[:, 1], pts[:, 2]] = True
        if useBoostedTree(positivesample, btsplits, btleaves) > -20:
            poss[npositives] = positivesample
            npositives += 1
    del pospoints
    print("kept {:d} out of {:d} positives".format(npositives,
                                                   npositivestotal))

    # compile and score samples
    X = np.append(poss[:npositives], negs, axis=0)
    del poss, negs
    score = np.array(
Exemple #5
0
                                                 grndstep, grndlen)
    groundTs = planes2Transforms(ground)

    for gtobj in gt:
        out_positiveboxes[nnotscoredcars, 0] = file_idx
        out_positiveboxes[nnotscoredcars, 1:6] = gtobj['box']
        nnotscoredcars += 1
        if not gtobj['scored']: continue
        gtx, gty, gtang, gtl, gtw = gtobj['box']
        if not (gtx > predictionview[0] and gtx < predictionview[1]
                and gty > predictionview[2] and gty < predictionview[3]):
            continue

        out_positiveboxes[nnotscoredcars, 6] = 1.

        gtgroundidx = floor((gtx, gty) / grndstep) - grndstart
        groundT = groundTs[gtgroundidx[0], gtgroundidx[1]]
        safetoshift = all(gtgroundidx > nlocaltiles)
        safetoshift &= all(gtgroundidx < grndlen - nlocaltiles - 1)

        # specify anchor grid of box
        gtz = -(groundT[2, 3] + groundT[2, 0] * gtx +
                groundT[2, 1] * gty) / groundT[2, 2]
        gtx2, gty2, gtz2 = groundT[:3, :3].dot([gtx, gty, gtz]) + groundT[:3,
                                                                          3]
        assert np.isclose(gtz2, 0.)
        gtc = np.cos(gtang)
        gts = np.sin(gtang)
        carT = np.array(((gtc, -gts, 0, gtx2), (gts, gtc, 0, gty2),
                         (0, 0, 1, 0), (0, 0, 0, 1)))
        gtT = np.linalg.inv(carT).dot(groundT)
Exemple #6
0
            continue
        data = np.fromfile(lidarfile, dtype=np.float32).reshape((-1, 4))[:, :3]
        data = data.dot(calib_extrinsic[:3, :3].T) + calib_extrinsic[:3, 3]
        img = grayer(imread(img_files.format(scene_idx, fileidx))[:, :, ::-1])
        ground = np.load(ground_files.format(scene_idx, fileidx))

        # shade by elevation
        plotimg = plotImgKitti(view_angle)
        max_elev = 5.
        pixel_to_ground = np.mgrid[40:640., :640]
        pixel_to_ground[0] *= -60. / 640
        pixel_to_ground[1] *= -60. / 640
        pixel_to_ground[0] += 60.
        pixel_to_ground[1] += 30.
        pixel_to_ground = pixel_to_ground.transpose((1, 2, 0))
        quantized = floor(pixel_to_ground[:, :, :2] / grndstep) - grndstart
        planes = ground[quantized[:, :, 0], quantized[:, :, 1]]
        heights = (planes[:, :, 3] -
                   planes[:, :, 0] * pixel_to_ground[:, :, 0] -
                   planes[:, :, 1] * pixel_to_ground[:, :, 1])
        heights = np.maximum(np.minimum(heights, max_elev), -max_elev)
        plotimg[40:640, :, 1] = 255 + np.minimum(heights, 0) / max_elev * 255
        plotimg[40:640, :, 2] = 255 - np.maximum(heights, 0) / max_elev * 255
        plotimg = np.minimum((plotimg[:, :, :3] / plotimg[:, :, 3:]),
                             255.).astype(np.uint8)

        # add lidar points to image
        tpts, tidxs = tilePoints(data, grndstart, grndstep, grndlen)
        for tilex, tiley in grnd2checkgrid:
            tileidx = tilex * grndlen[1] + tiley
            pts = tpts[tidxs[tileidx]:tidxs[tileidx + 1]]