Exemple #1
0
        'use_smooth_loss': args.use_smooth_loss,
        'use_seg_loss': args.use_seg_loss,
        'sim_loss_type': args.sim_loss_type,
        'gamma': args.gamma,
        'lamda': args.lamda,
        'training_classes': args.training_classes,
        'val_classes': args.val_classes,
        'test_classes': args.test_classes,
        'shots': args.shots,
    }

    assert set(args.training_classes + args.test_classes +
               args.val_classes) == set(range(1, 7))
    assert len(args.training_classes) + len(args.test_classes) + len(
        args.val_classes) == 6

    set_cfg(new_cfg)

    logging.info("Config:")

    logging.info(cfg)

    # Train the network
    reg_model = train_network()

    # Evaluate on test data
    evaluate_network(reg_model)

    # Download the reports and model
    download_results()
        elif hiden_layer_idx == 2:
            hiden_com = [[x, y] for x in range(1, 16) for y in range(1, 16)]
        elif hiden_layer_idx == 3:
            hiden_com = [[x, y, z] for x in [2, 10] for y in [2, 10] for z in [2, 10]]

        for hi in hiden_com:
            BP_size = [n_dim * cfg.RECEPTIVE, 1]
            BP_size.insert(1, hi)
            BP_sizes = []
            for x in BP_size:
                if isinstance(x, int):
                    BP_sizes.append(x)
                else:
                    BP_sizes.extend(x)

            for learn in [16]:
                for epoch in [200, 500, 1000, 2000, 3000, 4000]:
                    a = len(BP_sizes)
                    cfg.set_cfg(lay_num=len(BP_sizes) - 2, node_num=BP_sizes[1:-1], epoch=epoch)
                    print('hello,this is hiden_layer_num={0},hiden={1},out={2}'.format(hiden_layer_idx, hi, BP_sizes))
                    net = snn.StockNetwork(BP_sizes)
                    net.SGD(training_data=training_data,
                            epochs=epoch,
                            mini_batch_size=12,
                            learn_rate=learn*0.01,
                            test_data=test_data)    # test_data None

                    print('[Processing]: The config information is:.....')


Exemple #3
0
    # Warning: hacky
    make_row = lambda vals: (' %5s |' * len(vals)) % tuple(vals)
    make_sep = lambda n:  ('-------+' * n)

    print()
    print(make_row([''] + [('.%d ' % x if isinstance(x, int) else x + ' ') for x in all_maps['box'].keys()]))
    print(make_sep(len(all_maps['box']) + 1))
    for iou_type in ('box', 'mask'):
        print(make_row([iou_type] + ['%.2f' % x for x in all_maps[iou_type].values()]))
    print(make_sep(len(all_maps['box']) + 1))
    print()

if __name__ == '__main__':
    parse_args()
    if args.config is not None:
        set_cfg(args.config)

    if args.trained_model == 'interrupt':
        args.trained_model = SavePath.get_interrupt('weights/')
    elif args.trained_model == 'latest':
        args.trained_model = SavePath.get_latest('weights/', cfg.name)

    if args.config is None:
        model_path = SavePath.from_str(args.trained_model)
        # TODO: Bad practice? Probably want to do a name lookup instead.
        args.config = model_path.model_name + '_config'
        print('Config not specified. Parsed %s from the file name.\n' % args.config)
        set_cfg(args.config)

    if args.detect:
        cfg.eval_mask_branch = False
Exemple #4
0
            return self.detect(pred_outs)




# Some testing code
if __name__ == '__main__':
    from utils.functions import init_console
    init_console()

    # Use the first argument to set the config if you want
    import sys
    if len(sys.argv) > 1:
        from config import set_cfg
        set_cfg(sys.argv[1])

    net = Yolact()
    net.train()
    net.init_weights(backbone_path='weights/' + cfg.backbone.path)

    # GPU
    net = net.cuda()
    cudnn.benchmark = True
    torch.set_default_tensor_type('torch.cuda.FloatTensor')

    x = torch.zeros((1, 3, cfg.max_size, cfg.max_size))
    y = net(x)

    for p in net.prediction_layers:
        print(p.last_conv_size)