def init_db(): connection = SQLEngine.connect() context = MigrationContext.configure(connection) current_revision = context.get_current_revision() logger.boot('Database revision: %s', current_revision) if current_revision is None: DataBase.metadata.create_all(SQLEngine) config = Config(ALEMBIC_CONFIG) script = ScriptDirectory.from_config(config) head_revision = script.get_current_head() if current_revision is None or current_revision != head_revision: logger.boot('Upgrading database to version %s.', head_revision) command.upgrade(config, 'head') from config import Option session = Session() options = session.query(Option).first() if options is None: options = Option() options.version = head_revision session.add(options) from pulse import Pulse pulse = session.query(Pulse).first() if pulse is None: pulse = Pulse() session.add(pulse) session.commit()
class CMConfig(BaseConfig): log_level = Option('INFO') listen_addr = Option('') listen_port = IntOption(51235) cadir = Option('/etc/pki/certmaster/ca') cert_dir = Option('/etc/pki/certmaster') certroot = Option('/var/lib/certmaster/certmaster/certs') csrroot = Option('/var/lib/certmaster/certmaster/csrs') cert_extension = Option('cert') autosign = BoolOption(False) sync_certs = BoolOption(False) peering = BoolOption(True) peerroot = Option('/var/lib/certmaster/peers')
clustering_loss = criterion.compute(pairwise_distances, labels, opt, global_step) return clustering_loss if __name__ == "__main__": import warnings import time warnings.filterwarnings("ignore") print("hello") torch.save(torch.rand(3, 3), "/home/wyt/1_lrz/8-3/observe/step.pt") os.environ["CUDA_VISIBLE_DEVICES"] = "6" ml = metric_loss() opt = Option() # f = tl.cudafy(Variable(torch.randn(128, 50),requires_grad=True))[0] # l=tl.cudafy(torch.cat((torch.ones([100]),torch.zeros([28])),0))[0] # torch.save(f,"/home/wyt/1_lrz/test/f.pt") # torch.save(l, "/home/wyt/1_lrz/test/l.pt") f = torch.load("/home/wyt/1_lrz/test/f.pt") l = torch.load("/home/wyt/1_lrz/test/l.pt") # ans = ml.pairwise_distance() # t1=time.time() loss, num_class = ml.cluster_loss(opt, f, l) # t2=time.time() print("loss:", loss) print("num_class:", num_class) # print("ttime:",t2-t1," seconds") # print(ans) # centroid_ids = torch.tensor([0, 2, 3])
from config import Option from arguments_configurator import ArgsConfigurator opts = [] opts.append(Option('host', 'host', 'h', False, 'localhost', 'help...')) opts.append(Option('vcip', 'vcip', 'v', True, True, 'help...')) config_manager = ArgsConfigurator(opts) res = config_manager.config print '====='
class FuncdConfig(BaseConfig): log_level = Option('INFO') acl_dir = Option('/etc/func/minion-acl.d') certmaster_overrides_acls = BoolOption(True)
class MinionConfig(BaseConfig): log_level = Option('INFO') certmaster = Option('certmaster') certmaster_port = IntOption(51235) cert_dir = Option('/etc/pki/certmaster')
from config import Option from environment_configurator import EnvironmentConfigurator opts = [] opts.append(Option('Virgo Directory', 'virgoDir', 'h', False, 'localhost', 'help...')) opts.append(Option('Virgo Dir 1', 'virgoDir1', 'h', False, 'localhost', 'help...')) opts.append(Option('NVM bin', 'NVM_BIN', 'h', False, 'localhost', 'help...')) config_manager = EnvironmentConfigurator(opts) res = config_manager.config print '=====' print res