Exemple #1
0
    def test_configer(self):
        from configer import Configer

        default_ps_fname = pkg_resources.resource_filename(
            'tests', 'sample_settings.ini')

        ps1 = Configer(default_ps_fname=default_ps_fname)
        self.assertIsNone(ps1.status)

        ps2 = Configer(default_ps_fname=default_ps_fname, status=False)
        self.assertFalse(ps2.status)
        ps2.status = True
        self.assertTrue(ps2.status)
        ps2.new_status = True
        self.assertTrue(ps2.new_status)

        ps3 = Configer(default_ps_fname=default_ps_fname, **{'status': True})
        self.assertTrue(ps3.status)

        ps4 = Configer(default_ps_fname=default_ps_fname,
                       status=False,
                       **{'somethings': [1.0, 2.0]})
        self.assertFalse(ps4.status)

        ps5 = ps4 + ps3
        self.assertFalse(ps5.status)
        self.assertEqual(ps5.somethings, [1.0, 2.0])

        ps6 = ps4.overload(ps3)
        self.assertTrue(ps6.status)
Exemple #2
0
    def test_samples(self):
        ''' given the same network weights, the random pose generator must produce the same pose for a seed'''
        ps = Configer(default_ps_fname='../human_body_prior/train/vposer_smpl_defaults.ini')
        vposer = VPoser(num_neurons=ps.num_neurons, latentD=ps.latentD, data_shape = ps.data_shape)
        body_pose_rnd = vposer.sample_poses(num_poses=1, seed=100)

        body_pose_gt = np.load('samples/body_pose_rnd.npz')['data']
        self.assertAlmostEqual(np.square((c2c(body_pose_rnd) - body_pose_gt)).sum(), 0.0)
Exemple #3
0
    def __init__(self, dataset_dir, data_fields=[]):
        assert os.path.exists(dataset_dir)
        self.ds = {}
        for data_fname in glob.glob(os.path.join(dataset_dir, '*.pt')):
            k = os.path.basename(data_fname).replace('.pt', '')
            if len(data_fields) != 0 and k not in data_fields: continue
            self.ds[k] = torch.load(data_fname).type(torch.float32)

        dataset_ps_fname = glob.glob(os.path.join(dataset_dir, '..', '*.ini'))
        if len(dataset_ps_fname):
            self.ps = Configer(default_ps_fname=dataset_ps_fname[0],
                               dataset_dir=dataset_dir)
Exemple #4
0
def expid2model(expr_dir):
    from configer import Configer

    if not os.path.exists(expr_dir): raise ValueError('Could not find the experiment directory: %s' % expr_dir)

    best_model_fname = sorted(glob.glob(os.path.join(expr_dir, 'snapshots', '*.pt')), key=os.path.getmtime)[-1]

    print(('Found CCPCM Trained Model: %s' % best_model_fname))

    default_ps_fname = glob.glob(os.path.join(expr_dir,'*.ini'))[0]
    if not os.path.exists(
        default_ps_fname): raise ValueError('Could not find the appropriate ccpcm_settings: %s' % default_ps_fname)
    ps = Configer(default_ps_fname=default_ps_fname, work_dir = expr_dir, best_model_fname=best_model_fname)

    return ps, best_model_fname
Exemple #5
0
def run_vposer_trainer(ps):
    if not isinstance(ps, Configer):
        ps = Configer(default_ps_fname=ps)
    vp_trainer = VPoserTrainer(ps.work_dir, ps)

    ps.dump_settings(os.path.join(ps.work_dir, 'TR%02d_%s.ini' % (ps.try_num, ps.expr_code)))

    vp_trainer.logger(ps.expr_message)
    vp_trainer.perform_training()
    ps.dump_settings(os.path.join(ps.work_dir, 'TR%02d_%s.ini' % (ps.try_num, ps.expr_code)))

    vp_trainer.logger(ps.expr_message)

    test_loss_dict = vp_trainer.evaluate(split_name='test')
    vp_trainer.logger('Final loss on test set is %s' % (' | '.join(['%s = %.2e' % (k, v) for k, v in test_loss_dict.items()])))
Exemple #6
0
 def __init__(self):
     self.distributions = ["stable", "testing", "unstable"]
     self.config = Configer().config
     self.monitors = []
     for i in self.distributions:
         self.monitors.append(Fmonitor(self.config.workdir + i, i))
Exemple #7
0
                    passwords = result["passwords"]
                    if all(len(i) == len(passwords[0]) for i in passwords):
                        print(
                            bcolors.CYAN +
                            "Password column contains hashes, no plain passwords detected"
                        )
                        self.db_file = file_
                        return True
                    else:
                        print(
                            bcolors.FAIL +
                            f"Password column in {file_} contains plain passwords!"
                            + bcolors.OKGREEN)
                        self.db_file = file_
                        return False


if __name__ == "__main__":
    from configer import Configer

    settings = {
        "local": False,
        "page_limit": None,
        "vocabulary": False,
    }
    c = Configer("http://leafus.com.ua/", settings)
    log = Loginer(c)

    # log.bruteforce_attack(['https://id.bigmir.net/', 'http://leafus.com.ua/wp-admin', 'https://www.ukr.net/'])
    log.start_hack()
#
# If you use this code in a research publication please consider citing the following:
#
# Expressive Body Capture: 3D Hands, Face, and Body from a Single Image <https://arxiv.org/abs/1904.05866>
#
#
# Code Developed by:
# Nima Ghorbani <https://nghorbani.github.io/>
#
# 2018.01.02

from human_body_prior.train.vposer_smpl import run_vposer_trainer
from configer import Configer

expr_code = 'SOME_UNIQUE_ID'
args = {
    'expr_code' : expr_code,
    'base_lr': 0.005,

    'dataset_dir': 'VPOSER_DATA_DIR_PRODUCED_BEFORE',
    'work_dir': 'BASE_WORKing_DIR/%s'%expr_code, # Later you will give this pass to vposer_loader to load the model
}
ps = Configer(default_ps_fname='./vposer_smpl_defaults.ini', **args) # This is the default configuration

# Make a message to describe the purpose of this experiment
expr_message = '\n[%s] %d H neurons, latentD=%d, batch_size=%d,  kl_coef = %.1e\n' \
               % (ps.expr_code, ps.num_neurons, ps.latentD, ps.batch_size, ps.kl_coef)
expr_message += '\n'
ps.expr_message = expr_message

run_vposer_trainer(ps)
Exemple #9
0
    def __init__(self, help     = False,
                       version  = False,
                       rebuild  = False,
                       update   = False,
                       generate = False,
                       default  = False,
                       md5      = False,
                       sha      = False,
                       kill     = False,
                       watch    = False,
                       time     = 10.0,
                       path     = None,
                       config   = None,
                       exclude  = set(),
                       increase = set()):
        try:
            # Print version information
            if version:
                return jprint('version: 1.0.0.000 (20150621)')

            # Print help information
            if help:
                # TODO: add version number to help text
                _, width = (int(v) for v in
                                check_output('stty size',
                                             shell=True).decode('utf-8').split())
                return help_printer(_HELP, width, _INDENT)

            # Set working-path
            path = abspath(expanduser(expandvars(path or getcwd())))
            chdir(path)
            jprint('Sets work path:\n{}{}'.format(_INDENT, path))

            # Create cache directory if does not exist
            cache_dir = join(path, _CACHE_DIR)
            makedirs(cache_dir, exist_ok=True)
            jprint('Sets cache directory:\n{}{}'.format(_INDENT, cache_dir))

            # Remove everything and return
            if kill:
                jprint('Removes every janitor data from work path')
                rmtree(cache_dir, ignore_errors=True)
                raise Janitor.FinishedWithoutError

            # Create sample config file if specified
            if generate:
                configer = Configer.from_default(config_dir_path=path)
                jprint('Generates configuration file:'
                       '\n{}{}'.format(_INDENT, configer.to_file()))
                raise Janitor.FinishedWithoutError

            # Set configuration
            try:
                if default:
                    configer = Configer.from_default()
                    jprint('Uses default configuration')
                elif config:
                    config = expanduser(expandvars(config))
                    configer = Configer(config_file_path=config)
                    jprint('Uses manually specified configuration file:'
                           '\n{}{}'.format(_INDENT, config))
                else:
                    configer = Configer(config_dir_path=path)
                    jprint('Uses configuration file:'
                           '\n{}{}'.format(_INDENT, join(path, Configer.FILE_NAME)))
            except Configer.InvalidConfigFileFormat as e:
                jerror('Invalid JSON format in the configuration file')
                jerror(e)
                exit(EX_CONFIG)

            ## If use the `versioner` module
            #if configer['versioner']['use']:
            #    pass

            ## Check increase options
            #for option in increase:
            #    if option not in _SPEC_VALID['increase']:
            #        return jerror("{!r} is invalid for 'increase'".format(option))
            ## Increase version number
            #if increase:
            #    versioner = Versioner(path=cache_dir,
            #                          options=increase,
            #                          **configer['versioner'])
            #    versioner.to_file()
            #    return jprint('Current version is: {}'.format(versioner.version))

            # Import hashing algorithm
            if md5:
                hash_id = 0
                from hashlib  import md5    as hasher
                jprint('Uses MD5 hashing algorithm')
            elif sha:
                hash_id = 1
                from hashlib  import sha1   as hasher
                jprint('Uses SHA1 hashing algorithm')
            else:
                hash_id = 2
                try:
                    from pyhashxx import Hashxx as hasher
                    jprint('Uses xxHash hashing algorithm')
                except ImportError:
                    jerror('cannot use default hashing: '
                           'pyhashxx is not installed')
                    exit(EX_CONFIG)

            # Create checker
            checker = Checker(cache_dir, hash_id, hasher)

            # Rebuild or update
            if rebuild:
                jprint('Rebuilds cache files')
                checker.rebuild()

            # Collect all-excludes
            all_exclude = configer['exclude']
            for module in _MOD_USE_FILE:
                if configer[module]['use']:
                    mod_exclude = configer[module]['exclude']
                    for type in all_exclude:
                        try:
                            all_exclude[type] &= mod_exclude[type]
                        except KeyError:
                            pass

            # If watching look for time
            if watch:
                try:
                    time = float(time)
                    jprint('Sets watch time interval to: {} seconds'.format(time))
                except ValueError:
                    jerror('Invalid value for `time`: '
                           '{!r} is not a floating point number'.format(time))
                    exit(EX_CONFIG)

            # Go through each module and pass the necessary infos to them
            first_cycle = True
            while True:
                if first_cycle:
                    jprint('Walks through all files and folders in work path:')
                changed_files = []
                for root, dirs, files in walk(path):
                    # If skip this folder and all subfolders for every module
                    if root in all_exclude['folders']:
                        if first_cycle:
                            jskip(_INDENT, '<ALL>', join(root, '*'), sep='')
                        dirs.clear()
                        continue

                    # If skip subfolder
                    for dir in dirs:
                        if dir in all_exclude['folders']:
                            if first_cycle:
                                jskip(_INDENT, '<ALL>', join(root, dir, '*'))
                            dirs.remove(dir)

                    # Go through all files
                    for file in files:
                        _, ext = splitext(file)
                        # If extension or the filepath is on the black-list
                        if (ext in all_exclude['extensions']     or
                            ext[1:] in all_exclude['extensions'] or
                            file in all_exclude['names']):
                                if first_cycle:
                                    jskip(_INDENT, '<ALL>', join(root, file))
                                continue

                        # If file changed
                        file = join(root, file)
                        if checker.is_changed(file):
                            changed_files.append(file)
                            # If this is an update cycle only
                            if update:
                                continue
                            # Go through each module
                            for module in _MOD_USE_FILE:
                                mod_exclude = configer[module]['exclude']
                                # If file should be processed
                                try:
                                    # If this folder is excluded for module
                                    exclude = mod_exclude.get('folders', ())
                                    if (root in exclude or
                                        basename(root) in exclude):
                                            raise Janitor.Skip

                                    # If this extension is excluded for module
                                    exclude = mod_exclude.get('extensions', ())
                                    if (ext in exclude or
                                        ext[1:] in exclude):
                                            raise Janitor.Skip

                                    # If this file is excluded for module
                                    exclude = mod_exclude.get('names', ())
                                    if (file in exclude):
                                        raise Janitor.Skip

                                    # Use this file
                                    juse(_INDENT, module, file)
                                # If file should be skipped
                                except Janitor.Skip:
                                    jskip(_INDENT, module, file)
                                    continue

                # If any file changed since last
                # check, update and save cache
                if changed_files:
                    #for module in _MODULES:
                    #    module.done()
                    #    module.to_file()
                    if update:
                        jprint('Updates cache files')
                    checker.update(changed_files)
                    checker.to_file()
                    if (watch and
                        not first_cycle):
                        jprint('Watching for changes...')

                # If constantly watching
                if watch:
                    if first_cycle:
                        jprint('Watching for changes...')
                    first_cycle = False
                    update      = False
                    sleep(time)
                else:
                    break
        # If no error occured
        except KeyboardInterrupt:
            print()
        except Janitor.FinishedWithoutError:
            pass

        # Report to user
        return jprint('Finished')
Exemple #10
0
        'n_neurons': 256,
        'batch_size': 64, # each batch will be 120 frames
        'n_workers': 10,
        'cuda_id': 0,
        'use_multigpu':False,

        'reg_coef': 5e-4,

        'base_lr': 5e-3,

        'best_model_fname': None,
        'log_every_epoch': 2,
        'expr_code': expr_code,
        'work_dir': work_dir,
        'num_epochs': 100,
        'dataset_dir': '../data/dataset',
    }

    supercap_trainer = CCPCM_Trainer(work_dir, ps=Configer(default_ps_fname=default_ps_fname, **params))
    ps = supercap_trainer.ps

    ps.dump_settings(os.path.join(work_dir, 'TR%02d_%s' % (ps.try_num, os.path.basename(default_ps_fname))))

    expr_message = '\n[%s] batch_size=%d\n'% (ps.expr_code, ps.batch_size)

    expr_message += 'Using sigmoid instead of softmax.\n'
    expr_message += '\n'

    supercap_trainer.logger(expr_message)
    supercap_trainer.perform_training()
    ps.dump_settings(os.path.join(work_dir, 'TR%02d_%s' % (ps.try_num, os.path.basename(default_ps_fname))))
def prepare_vposer_datasets(vposer_dataset_dir,
                            amass_splits,
                            amass_dir,
                            logger=None):

    if dataset_exists(vposer_dataset_dir):
        if logger is not None:
            logger('VPoser dataset already exists at {}'.format(
                vposer_dataset_dir))
        return

    ds_logger = log2file(makepath(vposer_dataset_dir,
                                  'dataset.log',
                                  isfile=True),
                         write2file_only=True)
    logger = ds_logger if logger is None else logger_sequencer(
        [ds_logger, logger])

    logger('Creating pytorch dataset at %s' % vposer_dataset_dir)
    logger('Using AMASS body parameters from {}'.format(amass_dir))

    shutil.copy2(__file__, vposer_dataset_dir)

    # class AMASS_ROW(pytables.IsDescription):
    #
    #     # gender = pytables.Int16Col(1)  # 1-character String
    #     root_orient = pytables.Float32Col(3)  # float  (single-precision)
    #     pose_body = pytables.Float32Col(21 * 3)  # float  (single-precision)
    #     # pose_hand = pytables.Float32Col(2 * 15 * 3)  # float  (single-precision)
    #
    #     # betas = pytables.Float32Col(16)  # float  (single-precision)
    #     # trans = pytables.Float32Col(3)  # float  (single-precision)

    def fetch_from_amass(ds_names):
        keep_rate = 0.3

        npz_fnames = []
        for ds_name in ds_names:
            mosh_stageII_fnames = glob.glob(
                osp.join(amass_dir, ds_name, '*/*_poses.npz'))
            npz_fnames.extend(mosh_stageII_fnames)
            logger('Found {} sequences from {}.'.format(
                len(mosh_stageII_fnames), ds_name))

            for npz_fname in npz_fnames:
                cdata = np.load(npz_fname)
                N = len(cdata['poses'])

                # skip first and last frames to avoid initial standard poses, e.g. T pose
                cdata_ids = np.random.choice(list(
                    range(int(0.1 * N), int(0.9 * N), 1)),
                                             int(keep_rate * 0.8 * N),
                                             replace=False)
                if len(cdata_ids) < 1: continue
                fullpose = cdata['poses'][cdata_ids].astype(np.float32)
                yield {
                    'pose_body': fullpose[:, 3:66],
                    'root_orient': fullpose[:, :3]
                }

    for split_name, ds_names in amass_splits.items():
        if dataset_exists(vposer_dataset_dir, split_names=[split_name]):
            continue
        logger('Preparing VPoser data for split {}'.format(split_name))

        data_fields = {}
        for data in fetch_from_amass(ds_names):
            for k in data.keys():
                if k not in data_fields: data_fields[k] = []
                data_fields[k].append(data[k])

        for k, v in data_fields.items():
            outpath = makepath(vposer_dataset_dir,
                               split_name,
                               '{}.pt'.format(k),
                               isfile=True)
            v = np.concatenate(v)
            torch.save(torch.tensor(v), outpath)

        logger('{} datapoints dumped for split {}. ds_meta_pklpath: {}'.format(
            len(v), split_name, osp.join(vposer_dataset_dir, split_name)))

    Configer(**{
        'amass_splits': amass_splits.toDict(),
        'amass_dir': amass_dir,
    }).dump_settings(makepath(vposer_dataset_dir, 'settings.ini', isfile=True))

    logger('Dumped final pytorch dataset at %s' % vposer_dataset_dir)
Exemple #12
0
    def __init__(self,
                 help=False,
                 version=False,
                 rebuild=False,
                 update=False,
                 generate=False,
                 default=False,
                 md5=False,
                 sha=False,
                 kill=False,
                 watch=False,
                 time=10.0,
                 path=None,
                 config=None,
                 exclude=set(),
                 increase=set()):
        try:
            # Print version information
            if version:
                return jprint('version: 1.0.0.000 (20150621)')

            # Print help information
            if help:
                # TODO: add version number to help text
                _, width = (int(v) for v in check_output(
                    'stty size', shell=True).decode('utf-8').split())
                return help_printer(_HELP, width, _INDENT)

            # Set working-path
            path = abspath(expanduser(expandvars(path or getcwd())))
            chdir(path)
            jprint('Sets work path:\n{}{}'.format(_INDENT, path))

            # Create cache directory if does not exist
            cache_dir = join(path, _CACHE_DIR)
            makedirs(cache_dir, exist_ok=True)
            jprint('Sets cache directory:\n{}{}'.format(_INDENT, cache_dir))

            # Remove everything and return
            if kill:
                jprint('Removes every janitor data from work path')
                rmtree(cache_dir, ignore_errors=True)
                raise Janitor.FinishedWithoutError

            # Create sample config file if specified
            if generate:
                configer = Configer.from_default(config_dir_path=path)
                jprint('Generates configuration file:'
                       '\n{}{}'.format(_INDENT, configer.to_file()))
                raise Janitor.FinishedWithoutError

            # Set configuration
            try:
                if default:
                    configer = Configer.from_default()
                    jprint('Uses default configuration')
                elif config:
                    config = expanduser(expandvars(config))
                    configer = Configer(config_file_path=config)
                    jprint('Uses manually specified configuration file:'
                           '\n{}{}'.format(_INDENT, config))
                else:
                    configer = Configer(config_dir_path=path)
                    jprint('Uses configuration file:'
                           '\n{}{}'.format(_INDENT,
                                           join(path, Configer.FILE_NAME)))
            except Configer.InvalidConfigFileFormat as e:
                jerror('Invalid JSON format in the configuration file')
                jerror(e)
                exit(EX_CONFIG)

            ## If use the `versioner` module
            #if configer['versioner']['use']:
            #    pass

            ## Check increase options
            #for option in increase:
            #    if option not in _SPEC_VALID['increase']:
            #        return jerror("{!r} is invalid for 'increase'".format(option))
            ## Increase version number
            #if increase:
            #    versioner = Versioner(path=cache_dir,
            #                          options=increase,
            #                          **configer['versioner'])
            #    versioner.to_file()
            #    return jprint('Current version is: {}'.format(versioner.version))

            # Import hashing algorithm
            if md5:
                hash_id = 0
                from hashlib import md5 as hasher
                jprint('Uses MD5 hashing algorithm')
            elif sha:
                hash_id = 1
                from hashlib import sha1 as hasher
                jprint('Uses SHA1 hashing algorithm')
            else:
                hash_id = 2
                try:
                    from pyhashxx import Hashxx as hasher
                    jprint('Uses xxHash hashing algorithm')
                except ImportError:
                    jerror('cannot use default hashing: '
                           'pyhashxx is not installed')
                    exit(EX_CONFIG)

            # Create checker
            checker = Checker(cache_dir, hash_id, hasher)

            # Rebuild or update
            if rebuild:
                jprint('Rebuilds cache files')
                checker.rebuild()

            # Collect all-excludes
            all_exclude = configer['exclude']
            for module in _MOD_USE_FILE:
                if configer[module]['use']:
                    mod_exclude = configer[module]['exclude']
                    for type in all_exclude:
                        try:
                            all_exclude[type] &= mod_exclude[type]
                        except KeyError:
                            pass

            # If watching look for time
            if watch:
                try:
                    time = float(time)
                    jprint(
                        'Sets watch time interval to: {} seconds'.format(time))
                except ValueError:
                    jerror('Invalid value for `time`: '
                           '{!r} is not a floating point number'.format(time))
                    exit(EX_CONFIG)

            # Go through each module and pass the necessary infos to them
            first_cycle = True
            while True:
                if first_cycle:
                    jprint('Walks through all files and folders in work path:')
                changed_files = []
                for root, dirs, files in walk(path):
                    # If skip this folder and all subfolders for every module
                    if root in all_exclude['folders']:
                        if first_cycle:
                            jskip(_INDENT, '<ALL>', join(root, '*'), sep='')
                        dirs.clear()
                        continue

                    # If skip subfolder
                    for dir in dirs:
                        if dir in all_exclude['folders']:
                            if first_cycle:
                                jskip(_INDENT, '<ALL>', join(root, dir, '*'))
                            dirs.remove(dir)

                    # Go through all files
                    for file in files:
                        _, ext = splitext(file)
                        # If extension or the filepath is on the black-list
                        if (ext in all_exclude['extensions']
                                or ext[1:] in all_exclude['extensions']
                                or file in all_exclude['names']):
                            if first_cycle:
                                jskip(_INDENT, '<ALL>', join(root, file))
                            continue

                        # If file changed
                        file = join(root, file)
                        if checker.is_changed(file):
                            changed_files.append(file)
                            # If this is an update cycle only
                            if update:
                                continue
                            # Go through each module
                            for module in _MOD_USE_FILE:
                                mod_exclude = configer[module]['exclude']
                                # If file should be processed
                                try:
                                    # If this folder is excluded for module
                                    exclude = mod_exclude.get('folders', ())
                                    if (root in exclude
                                            or basename(root) in exclude):
                                        raise Janitor.Skip

                                    # If this extension is excluded for module
                                    exclude = mod_exclude.get('extensions', ())
                                    if (ext in exclude or ext[1:] in exclude):
                                        raise Janitor.Skip

                                    # If this file is excluded for module
                                    exclude = mod_exclude.get('names', ())
                                    if (file in exclude):
                                        raise Janitor.Skip

                                    # Use this file
                                    juse(_INDENT, module, file)
                                # If file should be skipped
                                except Janitor.Skip:
                                    jskip(_INDENT, module, file)
                                    continue

                # If any file changed since last
                # check, update and save cache
                if changed_files:
                    #for module in _MODULES:
                    #    module.done()
                    #    module.to_file()
                    if update:
                        jprint('Updates cache files')
                    checker.update(changed_files)
                    checker.to_file()
                    if (watch and not first_cycle):
                        jprint('Watching for changes...')

                # If constantly watching
                if watch:
                    if first_cycle:
                        jprint('Watching for changes...')
                    first_cycle = False
                    update = False
                    sleep(time)
                else:
                    break
        # If no error occured
        except KeyboardInterrupt:
            print()
        except Janitor.FinishedWithoutError:
            pass

        # Report to user
        return jprint('Finished')
Exemple #13
0
def do_():
    rc('font', **{'family': 'serif'})
    rc('text', usetex=True)
    rc('text.latex', unicode=True)
    rc('text.latex', preamble=r"\usepackage[T2A]{fontenc}")
    rc('text.latex', preamble=r"\usepackage[utf8]{inputenc}")
    rc('text.latex', preamble=r"\usepackage[russian]{babel}")

    path = easygui.fileopenbox()
    p = Parser1("tb_timeP", path)
    DATA = p.parse()

    p.shift_tb(DATA)

    QW_freqs = [18, 21, 22, 27]
    freqs2show = [18, 19.2, 20.4, 21.6, 22.2, 22.4, 23.2, 24.4, 25.6, 26.8]

    Drawer().draw(DATA,
                  freqs2show,
                  title=u"$T_{b}$ - без калибровки (экспериментальные данные)",
                  xlabel=u"время (сек.)",
                  ylabel="")

    config_path = easygui.fileopenbox()
    info = Configer(config_path)
    info.get_info()

    # ==================================================================
    theta = info.theta
    model_ = Model(Temperature=info.T, Pressure=info.P, Rho=info.rho)
    proc = Proc(DATA,
                model_,
                T_avg=info.Tavg,
                T_obl=info.Tobl,
                start_coordinate=info.start,
                stop_coordinate=info.stop,
                is_data_calibred=False)
    # ==================================================================

    plt.title("")
    Freqs, TauO, TauH2O = [], [], []
    for f in np.arange(5, 350, 0.5):
        Freqs.append(f)
        TauO.append(model_.tauO_theory(f, theta=51) / model_.dB2np)
        TauH2O.append(model_.tauRho_theory(f, theta=51) / model_.dB2np)
    plt.plot(Freqs, TauO, label=u"Кислород", color="red")
    plt.plot(Freqs, TauH2O, label=u"Водяной пар", color="blue")
    ax = plt.axes()
    ax.set_xscale("log", nonposx='clip')
    ax.set_yscale("log", nonposy='clip')
    plt.xlabel(u"ГГц")
    plt.ylabel(u"Дб")
    plt.legend(loc="best")
    plt.show()
    plt.close()

    plt.title(
        u"$T_{b}$ - модельные значения (безоблачная атм.)\n Температура " +
        str(model_.T) + u" °C, Давление " + str(int(model_.P / 1.33322)) +
        u" мм.рт.ст., Абс. влажность " + str(model_.rho) + u" $g/m^{3}$")
    FREQS, TBR, TBRnQ = [], [], []
    for freq in np.arange(18, 27.2, 0.2):
        T_br = model_.get_Tb_Q(freq, proc.T_avg, theta)
        Tbrnq = model_.get_Tb(freq, proc.T_avg, theta)
        FREQS.append(freq)
        TBR.append(T_br)
        TBRnQ.append(Tbrnq)
    Q = model_.get_Q()
    plt.plot(FREQS, TBRnQ, "b+", label=u'$T_{b}$ : $T_{avg}(1-e^{-tau})$')
    plt.plot(FREQS,
             TBR,
             "r+",
             label=u'$T_{b}$ :  Q = ' + str(Q) + u' $g/m^{2}$')
    print("Q_model = ", Q)
    plt.xlabel(u'ГГц')
    plt.ylabel(u'K')
    plt.legend()
    plt.show()
    plt.close()

    plt.title(u"Поглощение в кислороде - модель (безобл. атм.)")
    Freqs, Tbs = [], []
    for f in np.arange(18.0, 27.2, 0.2):
        Freqs.append(f)
        Tbs.append(model_.tauO_theory(f, theta))
    plt.plot(Freqs, Tbs, "r+")
    plt.xlabel(u"ГГц")
    plt.ylabel(u"непер")
    plt.show()
    plt.close()

    plt.title(u"Поглощение в водяном паре - модель (безобл. атм.)")
    Freqs, Tbs = [], []
    for f in np.arange(18.0, 27.2, 0.2):
        Freqs.append(f)
        Tbs.append(model_.tauRho_theory(f, theta))
    plt.plot(Freqs, Tbs, "r+")
    plt.xlabel(u"ГГц")
    plt.ylabel(u"непер")
    plt.show()
    plt.close()

    plt.title("$k_{w}$")
    Freqs, K = [], []
    for f in np.arange(18.0, 27.2, 0.01):
        Freqs.append(f)
        K.append(model_.kw(f, -2))
    plt.plot(Freqs, K)
    plt.xlabel(u"ГГц")
    plt.ylabel(u"Значение")
    plt.show()
    plt.close()

    print(info.nclbeg, info.nclend)
    proc.set_T_t0_nocluds_interval(time_begin=info.nclbeg,
                                   time_end=info.nclend)
    proc.calibr_Tb(theta=theta)

    Drawer().draw(proc.data,
                  freqs2show,
                  title=u"$T_{b}$ - яркостные температуры",
                  xlabel=u"время",
                  ylabel=u"температура [K]")

    # ==================================================================== #
    # ======================= Generate DataSet =========================== #
    # ==================================================================== #
    proc.generate_dataset("QW__f1_18GHz__f2_21GHz.txt",
                          freq1=18,
                          freq2=21,
                          theta=theta)
    proc.generate_dataset("QW__f1_18GHz__f2_22GHz.txt",
                          freq1=18,
                          freq2=22,
                          theta=theta)
    proc.generate_dataset("QW__f1_21GHz__f2_27GHz.txt",
                          freq1=21,
                          freq2=27,
                          theta=theta)
    proc.generate_dataset("QW__f1_22GHz__f2_27GHz.txt",
                          freq1=22,
                          freq2=27,
                          theta=theta)
    # ==================================================================== #

    QW = defaultdict(list)
    QW["18, 21"] = proc.get_resolved_QW(freq1=18, freq2=21, theta=theta)
    QW["18, 22"] = proc.get_resolved_QW(freq1=18, freq2=22, theta=theta)
    QW["21, 27"] = proc.get_resolved_QW(freq1=21, freq2=27, theta=theta)
    QW["22, 27"] = proc.get_resolved_QW(freq1=22, freq2=27, theta=theta)
    # QW["18, 27"] = proc.get_resolved_QW(freq1=18, freq2=27, theta=theta)
    # QW["18, 27"] = proc.get_QW(freq1=18, freq2=27, theta=theta)

    QW_err = defaultdict(list)
    QW_err["18, 21"] = proc.get_QW_errors(freq1=18,
                                          freq2=21,
                                          theta=theta,
                                          Tbr_error=1,
                                          Tavg_error=2)
    QW_err["18, 22"] = proc.get_QW_errors(freq1=18,
                                          freq2=22,
                                          theta=theta,
                                          Tbr_error=1,
                                          Tavg_error=2)
    QW_err["21, 27"] = proc.get_QW_errors(freq1=21,
                                          freq2=27,
                                          theta=theta,
                                          Tbr_error=1,
                                          Tavg_error=2)
    QW_err["22, 27"] = proc.get_QW_errors(freq1=22,
                                          freq2=27,
                                          theta=theta,
                                          Tbr_error=1,
                                          Tavg_error=2)
    # QW_err["18, 27"] = proc.get_QW_errors(freq1=18, freq2=27, theta=theta, Tbr_error=1, Tavg_error=2)

    plt.figure(1)
    plt.title(u"Q - полная масса водяного пара")
    k = 0
    for key in QW.keys():
        TIME, Q = [], []
        dTIME, dQ, dQ_err = [], [], []
        i = 0
        for time, q, _ in QW[key]:
            TIME.append(time)
            Q.append(q)
            if (i - k) % 100 == 0:
                dTIME.append(time)
                _, dq, _ = QW_err[key][i]
                dQ.append(q)
                dq = dq / 10  #!!!
                dQ_err.append(dq)
            i += 1
        plt.plot(TIME, Q, label=key + u" ГГц")
        ecolor = ""
        if k == 0: ecolor = "blue"
        if k == 25: ecolor = "orange"
        if k == 50: ecolor = "green"
        if k == 75: ecolor = "red"
        if k == 100: ecolor = "purple"
        # plt.errorbar(dTIME, dQ, yerr=dQ_err, fmt='o', ecolor="black", mfc=ecolor, mec=ecolor, ms=2, mew=3, capsize=2, capthick=3, elinewidth=3)
        k += 25
    plt.xlabel(u"время")
    plt.ylabel("$g/cm^{2}$")
    axes = plt.gca()
    # axes.set_ylim([1., 2.5])
    plt.legend()

    plt.figure(2)
    plt.title(u"W - водозапас облаков")
    k = 0
    for key in QW.keys():
        TIME, W = [], []
        dTIME, dW, dW_err = [], [], []
        i = 0
        for time, _, w in QW[key]:
            TIME.append(time)
            w = w * 10
            W.append(w)
            if (i - k) % 100 == 0:
                dTIME.append(time)
                _, _, dw = QW_err[key][i]
                dW.append(w)
                dW_err.append(dw)
            i += 1
        plt.plot(TIME, W, label=key + u" ГГц")
        ecolor = ""
        if k == 0: ecolor = "blue"
        if k == 25: ecolor = "orange"
        if k == 50: ecolor = "green"
        if k == 75: ecolor = "red"
        if k == 100: ecolor = "purple"
        # plt.errorbar(dTIME, dW, yerr=dW_err, fmt='o', ecolor="black", mfc=ecolor, mec=ecolor, ms=2, mew=3, capsize=2, capthick=3, elinewidth=3)
        k += 25
    axes = plt.gca()
    # axes.set_ylim([-0.5, 1])
    plt.xlabel(u"время")
    plt.ylabel("$kg/m^{2}$")
    plt.legend()

    plt.show()

    QW_opt = proc.get_opt_QW(QW_freqs, theta)

    plt.figure(1)
    TIME, Q, W = [], [], []
    for time, q, w in QW_opt:
        TIME.append(time)
        Q.append(q)
        W.append(w * 10)
    plt.plot(TIME, Q, color="red", label="Q")
    plt.plot(TIME, W, color="blue", label="W")
    plt.xlabel(u"время")
    plt.ylabel("Q [$g/cm^{2}$], W [$kg/m^{2}$]")
    plt.legend()
    '''
    plt.figure(3)
    plt.title("dQ")
    for key in QW_err:
        TIME, dQ = [], []
        for time, dq, _ in QW_err[key]:
            TIME.append(time)
            dQ.append(dq)
        plt.plot(TIME, dQ, label=key + " GHz")
    plt.xlabel("time")
    plt.ylabel("$value$")
    plt.legend()

    plt.figure(4)
    plt.title("dW")
    for key in QW_err:
        TIME, dW = [], []
        for time, _, dw in QW_err[key]:
            TIME.append(time)
            dW.append(dw)
        plt.plot(TIME, dW, label=key + " GHz")
    plt.xlabel("time")
    plt.ylabel("$value$")
    plt.legend()
    '''

    plt.show()
    '''
    plt.title("")
    TIME, TAU1821, TAU1822, TAU2721, TAU2722, TAU1827 = [], [], [], [], [], []
    min_len = len(proc.data[18])
    for f in [18, 21, 22, 27]:
        if len(proc.data[f]) < min_len: min_len = len(proc.data[f])
    for i in range(min_len):
        t18, Tb18 = proc.data[18][i]
        t21, Tb21 = proc.data[21][i]
        t22, Tb22 = proc.data[22][i]
        t27, Tb27 = proc.data[27][i]
        
        tau18 = model_.tau_experiment(Tb18, proc.T_avg + 273, theta)
        tau21 = model_.tau_experiment(Tb21, proc.T_avg + 273, theta)
        tau22 = model_.tau_experiment(Tb22, proc.T_avg + 273, theta)
        tau27 = model_.tau_experiment(Tb27, proc.T_avg + 273, theta)
        
        tau18 = model_.tauRho_theory(18, theta)
        tau21 = model_.tauRho_theory(21, theta)
        tau22 = model_.tauRho_theory(22, theta)
        tau27 = model_.tauRho_theory(27, theta)
        
        
        theta = 0
        tau1821 = math.fabs(model_.krho(18, theta) * model_.kw(21, -2) - model_.krho(21, theta) * model_.kw(18, -2))
        tau1822 = math.fabs(model_.krho(18, theta) * model_.kw(22, -2) - model_.krho(22, theta) * model_.kw(18, -2))
        tau2721 = math.fabs(model_.krho(21, theta) * model_.kw(27, -2) - model_.krho(27, theta) * model_.kw(21, -2))
        tau2722 = math.fabs(model_.krho(22, theta) * model_.kw(27, -2) - model_.krho(27, theta) * model_.kw(22, -2))
        tau1827 = math.fabs(model_.krho(18, theta) * model_.kw(27, -2) - model_.krho(27, theta) * model_.kw(18, -2))

        t = (t18 + t21 + t22 +t27) / 4
        TIME.append(t)
        TAU1821.append(tau1821)
        TAU1822.append(tau1822)
        TAU1827.append(tau1827)
        TAU2721.append(tau2721)
        TAU2722.append(tau2722)
    plt.plot(TIME, TAU1821, label="18 - 21")
    plt.plot(TIME, TAU1822, label="18 - 22")
    plt.plot(TIME, TAU2721, label="21 - 27")
    plt.plot(TIME, TAU2722, label="22 - 27")
    plt.plot(TIME, TAU1827, label="18 - 27")
    plt.legend()
    plt.show()

    print("18-21", TAU1821[0])
    print("18-22", TAU1822[0])
    print("21-27", TAU2721[0])
    print("22-27", TAU2722[0])
    print("18-27", TAU1827[0])
    '''

    print("QW avg's - no clouds interval")
    avgQ, avgW = 0, 0
    qavg, wavg = proc.get_QW_err_avg_noclouds(18, 21, theta, 1, 2)
    avgQ += math.fabs(qavg / 10)
    avgW += math.fabs(wavg)
    print("18-21:\tQ = ", qavg / 10, "\tW = ", wavg)
    qavg, wavg = proc.get_QW_err_avg_noclouds(18, 22, theta, 1, 2)
    avgQ += math.fabs(qavg / 10)
    avgW += math.fabs(wavg)
    print("18-22:\tQ = ", qavg / 10, "\tW = ", wavg)
    qavg, wavg = proc.get_QW_err_avg_noclouds(21, 27, theta, 1, 2)
    avgQ += math.fabs(qavg / 10)
    avgW += math.fabs(wavg)
    print("21-27:\tQ = ", qavg / 10, "\tW = ", wavg)
    qavg, wavg = proc.get_QW_err_avg_noclouds(22, 27, theta, 1, 2)
    avgQ += math.fabs(qavg / 10)
    avgW += math.fabs(wavg)
    print("22-27:\tQ = ", qavg / 10, "\tW = ", wavg)
    avgQ /= 4
    avgW /= 4
    print("AVG:\tQ = ", avgQ, "\tW = ", avgW)

    print("QW avg's - clouds interval")
    avgQ, avgW = 0, 0
    qavg, wavg = proc.get_QW_err_avg_clouds(18, 21, theta, 1, 2)
    avgQ += math.fabs(qavg / 10)
    avgW += math.fabs(wavg)
    print("18-21:\tQ = ", qavg / 10, "\tW = ", wavg)
    qavg, wavg = proc.get_QW_err_avg_clouds(18, 22, theta, 1, 2)
    avgQ += math.fabs(qavg / 10)
    avgW += math.fabs(wavg)
    print("18-22:\tQ = ", qavg / 10, "\tW = ", wavg)
    qavg, wavg = proc.get_QW_err_avg_clouds(21, 27, theta, 1, 2)
    avgQ += math.fabs(qavg / 10)
    avgW += math.fabs(wavg)
    print("21-27:\tQ = ", qavg / 10, "\tW = ", wavg)
    qavg, wavg = proc.get_QW_err_avg_clouds(22, 27, theta, 1, 2)
    avgQ += math.fabs(qavg / 10)
    avgW += math.fabs(wavg)
    print("22-27:\tQ = ", qavg / 10, "\tW = ", wavg)
    avgQ /= 4
    avgW /= 4
    print("AVG:\tQ = ", avgQ, "\tW = ", avgW)