Exemple #1
0
def read_region(config, *args, **kwargs):
    """Snip-out target regions from nc4 file

    Quick and dirty hax to reduce the size of data read in from netCDF files.
    Keeps a memory leak in the module from blowing up the script. Not
    the best way to handle this.

    Parameters
    ----------
    config : dict
        Run configuration dictionary. Used to parse out target regions.
    *args :
        Passed on to read().
    **kwargs :
        Passed on to read().

    Returns
    -------
    years : array-like
    regions : array-like
    data : array-like
    """
    years, regions, data = read(*args, **kwargs)

    if configs.is_allregions(config):
        regions_msk = np.ones(regions.shape, dtype='bool')
    else:
        target_regions = configs.get_regions(config, regions)
        regions_msk = np.isin(regions, target_regions)

    return years, regions[regions_msk], data[..., regions_msk]
Exemple #2
0
def iterate_regions(filepath, config={}):
    """
    Config options: column
    """

    years, regions, data = read(filepath, config.get('column', 'rebased'))

    config['regionorder'] = list(regions)

    if configs.is_allregions(config):
        yield 'all', years, data
        return

    regions = list(regions)
    for region in configs.get_regions(config, regions):
        if region == 'global':
            region = ''
        ii = regions.index(region)
        yield regions[ii], years, data[:, ii]
def iterate_regions(filepath, column, config={}):
    if column is not None or 'costs' not in filepath:
        years, regions, data = read(
            filepath, column if column is not None else 'rebased')
    else:
        years, regions, data1 = read(filepath, 'costs_lb')
        years, regions, data2 = read(filepath, 'costs_ub')
        data = ((data1 + data2) / 2) / 1e5

    config['regionorder'] = list(regions)

    if configs.is_allregions(config):
        yield 'all', years, data
        return

    regions = list(regions)
    for region in configs.get_regions(config, regions):
        if region == 'global':
            region = ''
        ii = regions.index(region)
        yield regions[ii], years, data[:, ii]
Exemple #4
0
def iterate_regions(filepath, column, config={}):
    global deltamethod_vcv

    do_deltamethod = False if configs.is_parallel_deltamethod(
        config) else config.get('deltamethod', None)
    if column is not None or 'costs' not in filepath:
        years, regions, data = read_region(
            config, filepath, column if column is not None else 'rebased',
            do_deltamethod)
    else:
        years, regions, data1 = read_region(config, filepath, 'costs_lb',
                                            do_deltamethod)
        years, regions, data2 = read_region(config, filepath, 'costs_ub',
                                            do_deltamethod)
        data = data2 / 1e5

    if deltamethod_vcv is not None and not config.get('deltamethod', False):
        ## Inferred that these were deltamethod files
        config['deltamethod'] = True

    if config.get('multiimpact_vcv',
                  None) is not None and deltamethod_vcv is not None:
        assert isinstance(config['multiimpact_vcv'], np.ndarray)
        # Extend data to conform to multiimpact_vcv
        foundindex = None
        for ii in range(config['multiimpact_vcv'].shape[0] -
                        deltamethod_vcv.shape[0] + 1):
            if np.allclose(
                    deltamethod_vcv,
                    config['multiimpact_vcv'][ii:(ii +
                                                  deltamethod_vcv.shape[0]),
                                              ii:(ii +
                                                  deltamethod_vcv.shape[1])]):
                foundindex = ii
                break
        if foundindex is None:
            print np.sum(
                np.abs(deltamethod_vcv - config['multiimpact_vcv']
                       [:deltamethod_vcv.shape[0], :deltamethod_vcv.shape[1]]))
            print np.sum(
                np.abs(deltamethod_vcv -
                       config['multiimpact_vcv'][deltamethod_vcv.shape[0]:,
                                                 deltamethod_vcv.shape[1]:]))
        assert foundindex is not None, "Cannot find the VCV for " + filepath + " within the master VCV."
        newdata = np.zeros(
            tuple([config['multiimpact_vcv'].shape[0]] + list(data.shape[1:])))
        if len(data.shape) == 2:
            newdata[foundindex:(foundindex +
                                deltamethod_vcv.shape[0]), :] = data
        else:
            newdata[foundindex:(foundindex +
                                deltamethod_vcv.shape[0]), :, :] = data
        data = newdata

        deltamethod_vcv = None  # reset for next file

    config['regionorder'] = list(regions)

    if configs.is_allregions(config):
        yield 'all', years, data
        return

    regions = list(regions)
    for region in configs.get_regions(config, regions):
        ii = regions.index(region)
        if config.get('deltamethod',
                      False) and not configs.is_parallel_deltamethod(config):
            yield regions[ii], years, data[:, :, ii]
        else:
            yield regions[ii], years, data[:, ii]