lr=configs.learning_rate,
                                       lr_decay_step=configs.lr_decay_step,
                                       lr_decay_rate=configs.lr_decay_rate)

        print("Network built!")
        # log_writer = tf.summary.FileWriter(logdir=log_dir, graph=sess.graph)

        model_saver = tf.train.Saver()
        net_init = tf.global_variables_initializer()
        sess.run([net_init])
        # reload the model

        for cur_model_iterations in evaluation_models:

            if os.path.exists(
                    configs.restore_model_path_fn(cur_model_iterations) +
                    ".index"):
                print(
                    "#######################Restored all weights ###########################"
                )
                model_saver.restore(
                    sess, configs.restore_model_path_fn(cur_model_iterations))
            else:
                print(configs.restore_model_path_fn(cur_model_iterations))
                print("The prev model is not existing!")
                quit()

            ##################### First get the depth scale from the subset of the training set ######################

            cur_model_depth_scale = my_utils.mAverageCounter(shape=[1])
            scale_data_index = my_utils.mRangeVariable(
        # log_writer = tf.summary.FileWriter(logdir=log_dir, graph=sess.graph)

        model_saver = tf.train.Saver()
        net_init = tf.global_variables_initializer()
        sess.run([net_init])
        # reload the model

        for cur_model_iterations in evaluation_models:

            pose_error_statistic = pose_error.mResultSaver()
            depth_eval = evaluators.mEvaluatorDepth(nJoints=configs.nJoints)
            coords_eval = evaluators.mEvaluatorPose3D(nJoints=configs.nJoints)

            data_index = my_utils.mRangeVariable(min_val=data_from, max_val=data_to-1, initial_val=data_from)

            if os.path.exists(configs.restore_model_path_fn(cur_model_iterations)+".index"):
                print("#######################Restored all weights ###########################")
                model_saver.restore(sess, configs.restore_model_path_fn(cur_model_iterations))
            else:
                print(configs.restore_model_path_fn(cur_model_iterations))
                print("The prev model is not existing!")
                quit()

            while not data_index.isEnd():
                global_steps = sess.run(ordinal_model.global_steps)

                batch_images_np = np.zeros([configs.batch_size, configs.img_size, configs.img_size, 3], dtype=np.float32)
                batch_depth_np = np.zeros([configs.batch_size, configs.nJoints], dtype=np.float32)

                img_path_for_show = []
                label_path_for_show = []