Exemple #1
0
def visualisationOfContourLines():
  #modelConf:LinPrefModelConfiguration
  modelConf = LinPrefModelConfiguration(1.0, 1.0, 1.0, 1.0)

  aggrLevel = 0.90

  # fileNameUsers:String
  fileNameUsers = "../datasets/usersRefractedModel.csv"

  # users:User[]
  users = readUsers(fileNameUsers);

  pointsDataCube = [Point(0.73, 0.755), Point(0.125, 0.45), Point(0.624, 0.15)]
  labels = ["A", "B", "C"]

  for indexI in range(len(users)):
    user = users[indexI]
    user.printUser()

    userProfileModel1 = user.exportUserProfileModel();
    #userProfileModel1 = user.exportUserProfileRefractedModel();
    
    # title:String
    title = 'Lin. pref. model'

    # painting:Painting
    painting = Painting(modelConf, title)
    painting.paintOnlyModel(userProfileModel1, aggrLevel, 'g')
    painting.paintPoints(pointsDataCube, [], labelsDataCube=[], labelsPrefCube=[], color="b", size=1)

    painting.paint(indexI);
    #painting.save(indexI);
    break;
def paintPreferenceCube():
    #linPrefModelConf:LinPrefModelConfiguration
    linPrefModelConf = LinPrefModelConfiguration(2.0, 1.25, 1.0, 1.0)

    #points:Point[]
    points = [
        Point(0.1, 0.1),
        Point(0.2, 0.2),
        Point(0.3, 0.4),
        Point(0.9, 0.5)
    ]

    g = PaintingPreferenceCubeModel(linPrefModelConf, "Data Cube")
    g.paintPreferencerCube(points)
    g.paint(1)
Exemple #3
0
class InputSimpleShow:
    # linPrefModelConf:LinPrefModelConfiguration
    linPrefModelConf = LinPrefModelConfiguration(1.0, 1.0, 1.0, 1.0)

    # userProfileModelStructured:UserProfileModelStructured
    userProfileModelStructured = UserProfileModelStructured(
        PrefFncRefractedModel(0.5), PrefFncRefractedModel(0.5),
        AggrFnc([0.5, 0.5]))

    # aggrLevel:Float
    aggrLevel = 0.8

    # pointsVisitedDC:list<PointWithID>
    pointsWithIDVisitedDC = [
        PointWithID(Point(0.70, 0.75), "A"),
        PointWithID(Point(0.15, 0.45), "B"),
        PointWithID(Point(0.60, 0.15), "C"),
        PointWithID(Point(0.40, 0.85), "D"),
        PointWithID(Point(0.5, 0.5), "E")
    ]

    # pointsNoVisitedDC:list<PointWithID>
    pointsWithIDNoVisitedDC = [
        PointWithID(Point(0.25, 0.15), "M"),
        PointWithID(Point(0.1, 0.65), "N"),
        PointWithID(Point(0.35, 0.85), "O"),
        PointWithID(Point(0.9, 0.7), "P"),
        PointWithID(Point(0.65, 0.45), "Q")
    ]

    def generatePointsWithIDVisitedDC(count):
        points = []
        for i in range(count):
            x = random.uniform(0, 1)
            y = random.uniform(0, 1)
            pI = PointWithID(Point(x, y), i)
            points.append(pI)
        return points

    def generatePointsWithIDNoVisitedDC(count):
        points = []
        for i in range(count):
            x = random.uniform(0, 1)
            y = random.uniform(0, 1)
            pI = PointWithID(Point(x, y), 100 + i)
            points.append(pI)
        return points
Exemple #4
0
    def show(self, width, height):

        # linPrefModelConf:LinPrefModelConfiguration
        self.linPrefModelConf = LinPrefModelConfiguration(1.0, 1.0, 1.0, 1.0)

        # userID:int
        self.userID = 1

        # dimensionX:int
        self.dimensionX = 0
        self.dimensionY = 1

        self.wx = 0.5

        # aggrLevel:Float
        self.aggrLevel = 0.8

        self.form();
        self.model1()
Exemple #5
0
    def __generateRatings(self, dmDescription, upModelsDef, pointNDWithIDs):
        # upModel:UserProfileModelND
        upModel = upModelsDef.exportUserProfileModelND()

        # points:list<PointND>
        points = [pointI.point for pointI in pointNDWithIDs]

        #linPrefModelConf:LinPrefModelConfiguration
        linPrefModelConf = LinPrefModelConfiguration(1.0, 1.0, 1.0, 1.0)

        # ratingValues:List<float>
        ratingValues = upModel.preferenceOfPointsInDataCube(
            points, linPrefModelConf)

        # ratings:List<Rating>
        ratings = [
            Rating(upModelsDef.userID, pointNDWithIDs[i].pointID,
                   ratingValues[i]) for i in range(len(ratingValues))
        ]

        return ratings
Exemple #6
0
    def __init__(self):
        super().__init__()
        self.setWindowTitle('Linear Monotone Preference Model')
        self.resize(550, 550)

        self._main = QtWidgets.QWidget()

        self.setCentralWidget(self._main)
        self.layout = QtWidgets.QVBoxLayout(self._main)

        self.model = ModelOfPoints()
        self.c = CanvasDimensions(550, 550)

        #widget = CanvasWidget(self.c, self.model)
        #self.layout.addWidget(widget)

        linPrefModelConf = LinPrefModelConfiguration(1, 1, 1, 1)
        model = GraphicalModel(linPrefModelConf)
        model.initFigure("ahoj")

        self.layout.addWidget(model.fig1)
Exemple #7
0
class InputTwoUsers:
    #linPrefModelConf:LinPrefModelConfiguration
    linPrefModelConf = LinPrefModelConfiguration(2.0, 1.25, 1.0, 1.0)

    #user2D1:User2D
    user2D1 = User2D(1, 1.5, 0.3, 0.66)
    #user2D2:User2D
    user2D2 = User2D(2, 0.5, 0.9, 0.33)

    # aggrLevel1:Float
    aggrLevel1 = 0.667
    # aggrLevel2:Float
    aggrLevel2 = 0.667

    #pointsWithIdVisitedDC:Point[]
    #pointsDataCube = [Point(0.73, 0.755), Point(1.125, 0.45), Point(1.624, 0.15)]
    pointsWithIdVisitedDC = [
        PointWithID(Point(0.5, 0.5), "A"),
        PointWithID(Point(0.75, 0.5), "B"),
        PointWithID(Point(0.5, 0.75), "C"),
        PointWithID(Point(0.75, 0.75), "D")
    ]
Exemple #8
0
def paintData():
  #linPrefModelConf:LinPrefModelConfiguration
  linPrefModelConf = LinPrefModelConfiguration(1.0, 1.0, 1.0, 1.0)

  #userProfileModel1:UserProfileModel
  userProfileModel1 = getUserProfileModel01()

  #userProfileModel2:UserProfileModel
  userProfileModel2 = getUserProfileModel02()

  # fileNameItems:String
  fileNameItems = "../datasets/itemsRefractedModel.csv"

  # items:Item[]
  items = readItems(fileNameItems);

  #pointsDataCube:Point[]
  pointsDataCube = [Point(i.x, i.y) for i in items]

  pointsPrefCube1 = userProfileModel1.pointsDataCubeToPointsPrefCube(pointsDataCube);
  pointsPrefCube2 = userProfileModel2.pointsDataCubeToPointsPrefCube(pointsDataCube);

  # preferences:float[]
  preferences1 = userProfileModel1.preferenceOfPointsInPC(pointsPrefCube1, linPrefModelConf);
  preferences2 = userProfileModel2.preferenceOfPointsInPC(pointsPrefCube2, linPrefModelConf);

  rmseVal = rmse(preferences1, preferences2)
  print("rmse: ", rmseVal);

  #title:String
  title = 'Lin. pref. model';

  #painting:Painting
  painting = Painting(linPrefModelConf, title)
  painting.paintModelOnlyPoints(userProfileModel1, pointsDataCube, pointsPrefCube1, "r");
  painting.paintModelOnlyPoints(userProfileModel2, pointsDataCube, pointsPrefCube1, "g");

  painting.paint("");
Exemple #9
0
class InputThreshold:
    #linPrefModelConf:LinPrefModelConfiguration
    linPrefModelConf = LinPrefModelConfiguration(2.0, 1.25, 1.0, 1.0)

    #title:String
    title = "Preferenc Cube"

    #points:Point[]
    points = [
        Point(0.1, 0.1),
        Point(0.2, 0.2),
        Point(0.3, 0.4),
        Point(0.9, 0.5)
    ]

    # pointsWithIDs:PointWithID[]
    pointsWithIDs = [
        PointWithID(Point(0.1, 0.9), 'A'),
        PointWithID(Point(0.2, 0.8), 'B'),
        PointWithID(Point(0.3, 0.7), 'C'),
        PointWithID(Point(0.4, 0.6), 'D'),
        PointWithID(Point(0.5, 0.5), 'E')
    ]
Exemple #10
0
def convertRefractedModelToTrianularModel():

    #modelConf:LinPrefModelConfiguration
    modelConf = LinPrefModelConfiguration(1.0, 1.0, 1.0, 1.0)

    # usersAll:User[]
    usersAll = readUsers()
    #print("usersAll: ", len(usersAll))

    # fileNameRatings:String
    fileNameRatings = ".." + os.sep + "datasets" + os.sep + "ratingsRefractedModel.csv"
    # ratingsAll:Rating[]
    ratingsAll = readRatings(fileNameRatings)
    #print("ratingsAll: ", len(ratingsAll))

    # itemsAll:Item[]
    itemsAll = readItems()
    #print("itemsAll: ", len(itemsAll))

    # ratingsNew:Rating[]
    ratingsNew = []

    # userIds:int[]
    userIds = [u.uid for u in usersAll]

    for userIdI in userIds:
        #print(userIdI)

        # user:User
        user = [u for u in usersAll if u.uid == userIdI][0]
        #user.printUser();

        #userProfileModel = user.exportUserProfileTriangularModel()
        userProfileModel = user.exportUserProfileRefractedModel()

        # ratings:Rating[]
        ratings = [r for r in ratingsAll if r.uid == userIdI]
        #print("ratings: ", len(ratings))

        # items:Item[]
        items = [i for i in itemsAll if i.iid in [r.iid for r in ratings]]
        #print("items: ", len(items))

        # pointsDataCube:Point[]
        #pointsDataCube = [i.exportAsPoint() for i in items]

        # preferences:Float[]
        #preferences = userProfileModel.preferenceOfPointsInDataCube(pointsInDataCube, modelConf);

        # itemIndexI:int
        for itemIndexI in range(0, len(items)):
            # itemI:Item
            itemI = items[itemIndexI]
            # ratingI:Rating
            ratingI = ratings[itemIndexI]

            # pointInDataCubeI:Point
            pointInDataCubeI = itemI.exportAsPoint()

            # preferencesI:Float[]
            preference2I = userProfileModel.preferenceOfPointInDataCube(
                pointInDataCubeI, modelConf)

            # ratingI:Rating[]
            ratingI = Rating(userIdI, ratingI.iid, preference2I, 0,
                             ratingI.typ)

            ratingsNew.append(ratingI)

    fileNameRatings2 = ".." + os.sep + "datasets" + os.sep + "ratingsRectangledModel.csv"
    writeRatings(ratingsNew, fileNameRatings2)

    # test reading computed dataset
    # ratingsAll3:Rating[]
    ratingsAll3 = readRatings(fileNameRatings2)
Exemple #11
0
def testDatasetRMSE():
    aggrLevel = 0.95

    #linPrefModelConf:LinPrefModelConfiguration
    linPrefModelConf = LinPrefModelConfiguration(1.0, 1.0, 1.0, 1.0)

    # fileNameUsers:String
    fileNameUsers = "../datasets/usersRefractedModel.csv"

    # usersAll:User[]
    usersAll = readUsers(fileNameUsers)
    print("usersAll: ", len(usersAll))

    # fileNameRatings:String
    fileNameRatings = "../datasets/ratingsRefractedModel.csv"

    # ratingsAll:Rating[]
    ratingsAll = readRatings(fileNameRatings)
    #print("ratingsAll: ", len(ratingsAll))

    # fileNameItems:String
    fileNameItems = "../datasets/itemsRefractedModel.csv"

    # itemsAll:Item[]
    itemsAll = readItems(fileNameItems)
    #print("itemsAll: ", len(itemsAll))

    userIds = [u.uid for u in usersAll]

    for userIdI in userIds:
        # user:User
        user = [u for u in usersAll if u.uid == userIdI][0]
        user.printUser()
        user = user.exportUser2D()
        user.printUser()

        # ratings:Rating[]
        ratings = [r for r in ratingsAll if r.uid == userIdI]
        #print("ratings: ", len(ratings))

        # ratingsTrain:Rating[]
        ratingsTrain = [r for r in ratings if r.typ == 1]

        # ratingsTest:Rating[]
        ratingsTest = [r for r in ratings if r.typ == 2]

        # itemsTrain:Item[]
        itemsTrain = [
            i for i in itemsAll if i.iid in [r.iid for r in ratingsTrain]
        ]
        # itemsTest:Item[]
        itemsTest = [
            i for i in itemsAll if i.iid in [r.iid for r in ratingsTest]
        ]

        # pointsTrain:Point[]
        pointsTrain = [i.exportAsPoint() for i in itemsTrain]
        # pointsTest:Point[]
        pointsTest = [i.exportAsPoint() for i in itemsTest]

        # prefsTrain:float[]
        prefsTrain = [r.p2 for r in ratingsTrain]
        # prefsTest:float[]
        prefsTest = [r.p2 for r in ratingsTest]

        #userProfileModel1 = user.exportUserProfileTriangularModel(linPrefModelConf)
        userProfileModel1 = user.exportUserProfileRefractedModel(
            linPrefModelConf)

        # pointsPrefCubeTrain:Point[]
        pointsPrefCubeTrain = userProfileModel1.pointsDataCubeToPointsPrefCube(
            pointsTrain)
        pointsPrefCubeTest = userProfileModel1.pointsDataCubeToPointsPrefCube(
            pointsTest)

        # prefsPointsPrefCubeTrain:Point[]
        prefsPointsPrefCubeTrain = userProfileModel1.preferenceOfPointsInPC(
            pointsPrefCubeTrain, linPrefModelConf)
        prefsPointsPrefCubeTest = userProfileModel1.preferenceOfPointsInPC(
            pointsPrefCubeTest, linPrefModelConf)

        rmseTrainVal = rmse(prefsPointsPrefCubeTrain, prefsTrain)
        print("rmseTrain: ", rmseTrainVal)

        rmseTestVal = rmse(prefsPointsPrefCubeTest, prefsTest)
        print("rmseTest: ", rmseTestVal)

        # title:String
        title = 'Lin. pref. model'

        # painting:Painting
        painting = Painting(linPrefModelConf, title)
        painting.paintOnlyModel(userProfileModel1, aggrLevel, 'r')

        painting.paintPoints(pointsTrain,
                             pointsPrefCubeTrain,
                             labelsDataCube=[],
                             labelsPrefCube=[],
                             color="b",
                             size=1)
        painting.paintPoints(pointsTest,
                             pointsPrefCubeTest,
                             labelsDataCube=[],
                             labelsPrefCube=[],
                             color="r",
                             size=1)

        #painting.paint(userIdI);
        painting.save(userIdI)
        painting.close()
Exemple #12
0
def search():
    aggrLevel = 0.95

    #modelConf:LinPrefModelConfiguration
    modelConf = LinPrefModelConfiguration(1.0, 1.0, 1.0, 1.0)

    # fileNameUsers:String
    fileNameUsers = "../datasets/usersRefractedModel.csv"

    # usersAll:User[]
    usersAll = readUsers(fileNameUsers)
    #print("usersAll: ", len(usersAll))

    # fileNameRatings:String
    fileNameRatings = "../datasets/ratingsRefractedModel.csv"

    # ratingsAll:Rating[]
    ratingsAll = readRatings(fileNameRatings)
    #print("ratingsAll: ", len(ratingsAll))

    # fileNameItems:String
    fileNameItems = "../datasets/itemsRefractedModel.csv"

    # itemsAll:Item[]
    itemsAll = readItems(fileNameItems)
    #print("itemsAll: ", len(itemsAll))

    userIds = [u.uid for u in usersAll]

    userId = userIds[0]

    print("Input:")
    # user:User
    user = [u for u in usersAll if u.uid == userId][0]
    user.printUser()

    # ratings:Rating[]
    ratings = [r for r in ratingsAll if r.uid == userId]
    #print("ratings: ", len(ratings))

    # ratingsTrain:Rating[]
    ratingsTrain = [r for r in ratings if r.typ == 1]

    # ratingsTest:Rating[]
    ratingsTest = [r for r in ratings if r.typ == 2]

    # itemsTrain:Item[]
    itemsTrain = [
        i for i in itemsAll if i.iid in [r.iid for r in ratingsTrain]
    ]
    # itemsTest:Item[]
    itemsTest = [i for i in itemsAll if i.iid in [r.iid for r in ratingsTest]]

    # pointsTrain:Point[]
    pointsTrain = [i.exportAsPoint() for i in itemsTrain]
    # pointsTest:Point[]
    pointsTest = [i.exportAsPoint() for i in itemsTest]

    # prefsTrain:float[]
    prefsTrain = [r.p2 for r in ratingsTrain]
    # prefsTest:float[]
    prefsTest = [r.p2 for r in ratingsTest]

    ix = user.ix
    iy = user.iy
    wx = user.exportNormalizedWX()
    wy = user.exportNormalizedWY()
    print("User ix: " + str(ix) + ", iy: " + str(iy) + ", wx: " + str(wx))

    ## searchAlg:RandomSearch
    #searchAlg = RandomSearch()
    ## theBestIndivEval:IndividualEvaluated = modelConf:LinPrefModelConfiguration, pointsTrain:Point[], prefsTrain:Point[], fitnessFnc:Function, generateFnc:Function
    #theBestIndivEval = searchAlg.search(modelConf, pointsTrain, prefsTrain, numberOfGenerations=10, fitnessFnc=fitnessRMSE, generateFnc=operatorGenerate)

    # searchAlg:HillClimbing
    searchAlg = HillClimbing()
    # theBestIndivEval:IndividualEvaluated = modelConf:LinPrefModelConfiguration, pointsTrain:Point[], prefsTrain:Point[], fitnessFnc:Function, generateFnc:Function, neighborFnc:Function
    theBestIndivEval = searchAlg.search(
        modelConf,
        pointsTrain,
        prefsTrain,
        numberOfGenerations=10000,
        fitnessFnc=fitnessRMSE_,
        generateFnc=operatorGenerate,
        neighborFnc=operatorRandomMoveTriangularModel)

    theBestIndiv = theBestIndivEval.individual

    # userProfileModel:UserProfileModel
    userProfileModel = theBestIndiv.exportUserProfileRefractedModel()
    print("")

    print("Result:")
    #userProfileModel.print()
    theBestIndiv.printIndividualUser()

    # pointsPrefCubeTrain:Point[]
    pointsPrefCubeTrain = userProfileModel.pointsDataCubeToPointsPrefCube(
        pointsTrain)
    pointsPrefCubeTest = userProfileModel.pointsDataCubeToPointsPrefCube(
        pointsTest)

    # prefsPointsPrefCubeTrain:Point[]
    prefsPointsPrefCubeTrain = userProfileModel.preferenceOfPointsInPC(
        pointsPrefCubeTrain, modelConf)
    prefsPointsPrefCubeTest = userProfileModel.preferenceOfPointsInPC(
        pointsPrefCubeTest, modelConf)

    fitnessRMSETrain = rmse(prefsPointsPrefCubeTrain, prefsTrain)
    print("fitnessRMSETrain: ", fitnessRMSETrain)

    fitnessRMSETest = rmse(prefsPointsPrefCubeTest, prefsTest)
    print("fitnessRMSETest: ", fitnessRMSETest)
def paintContourLinesExample():
    #linPrefModelConf:LinPrefModelConfiguration
    linPrefModelConf = LinPrefModelConfiguration(2.0, 1.25, 1.0, 1.0)

    #userProfileModel1:UserProfileModel
    userProfileModel1 = getUserProfileModelExample01()

    #userProfileModel2:UserProfileModel
    userProfileModel2 = getUserProfileModelExample02()

    aggrLevel = 0.667

    #polygon1:Point[]
    polygon1 = userProfileModel1.getMorphismOfAggregationFncToDataCubePolygon(
        aggrLevel, linPrefModelConf)

    # surface:float
    surface1 = countPolygonSurfaceArea(polygon1)
    print("Surface1: ", surface1)

    #polygon1:Point[]
    polygon2 = userProfileModel2.getMorphismOfAggregationFncToDataCubePolygon(
        aggrLevel, linPrefModelConf)

    # surface:float
    surface2 = countPolygonSurfaceArea(polygon2)
    print("Surface2: ", surface2)

    surfaceOfOverlap = countIntersection(polygon1, polygon2)
    print("Overlap: ", surfaceOfOverlap)

    #pointsDataCube:Point[]
    pointsDataCube = [
        Point(0.73, 0.755),
        Point(1.125, 0.45),
        Point(1.624, 0.15)
    ]
    labels = ["A", "B", "C"]

    pointsPrefCube = userProfileModel1.pointsDataCubeToPointsPrefCube(
        pointsDataCube)
    pointsPrefCube2 = userProfileModel2.pointsDataCubeToPointsPrefCube(
        pointsDataCube)

    # title:String
    title = 'Lin. pref. model'
    # painting:Painting
    painting = Painting(linPrefModelConf, title)
    painting.paintOnlyModel(userProfileModel1, aggrLevel, 'r')
    painting.paintOnlyModel(userProfileModel2, aggrLevel, 'g')

    painting.paintPoints(pointsDataCube,
                         pointsPrefCube,
                         labelsDataCube=labels,
                         labelsPrefCube=labels,
                         color="r",
                         size=1)
    painting.paintPoints(pointsDataCube,
                         pointsPrefCube2,
                         labelsDataCube=labels,
                         labelsPrefCube=labels,
                         color="b",
                         size=1)

    painting.paint("")
Exemple #14
0
def cv03():

  # numberOfUsers:int
  numberOfUsers = 10

  #linPrefModelConf:LinPrefModelConfiguration
  linPrefModelConf = LinPrefModelConfiguration(1.0, 1.0, 1.0, 1.0)

  # fileNameUsers:String
  fileNameUsers = "../datasets/usersRefractedModel.csv"
  # fileNameRatings:String
  fileNameRatings = "../datasets/ratingsRefractedModel.csv"
  # fileNameItems:String
  fileNameItems = "../datasets/itemsRefractedModel.csv"

  # estimateUserFnc:function, testID:str
  estimateUserFnc = estimateUserByTheBestRating;          testID='theBestRating'
  #estimateUserFnc = estimateUserByMiddleOf23;             testID='middleOf23'
  #estimateUserFnc = estimateUserByCenterOfMassOf23;       testID='centerOfMassOf23'
  #estimateUserFnc = estimateUserBy10Random;               testID='10Random'

  print(estimateUserFnc)

  # usersAll:User[]
  usersAll = readUsers(fileNameUsers);
  #print("usersAll: ", len(usersAll))

  # ratingsAll:Rating[]
  ratingsAll = readRatings(fileNameRatings);
  #print("ratingsAll: ", len(ratingsAll))

  # itemsAll:Item[]
  itemsAll = readItems(fileNameItems);
  #print("itemsAll: ", len(itemsAll))

  # errors:float[]
  errors = []

  # user:User
  for user in usersAll:

      # user2DI:User2D
      user2DI = user.exportUser2D()
      user2DI.printUser();

      # ratings:Rating[]
      ratings = [r for r in ratingsAll if r.uid == user2DI.uid]
      #print("ratings: ", len(ratings))

      # ratingsTrain:Rating[]
      ratingsTrain = [r for r in ratings if r.typ == 1]
      # ratingsTest:Rating[]
      ratingsTest = [r for r in ratings if r.typ == 2]

      # itemsTrain:Item[]
      itemsTrain = [i for i in itemsAll if i.iid in [r.iid for r in ratingsTrain]]
      # itemsTest:Item[]
      itemsTest = [i for i in itemsAll if i.iid in [r.iid for r in ratingsTest]]

      # pointsTrain:PointWithRating[]
      pointsWithRatingTrain = [PointWithRating(itemsTrain[i].exportAsPoint(), ratingsTrain[i].p2) for i in range(len(ratingsTrain))]
      # pointsTest:PointWithRating[]
      pointsWithRatingTest = [PointWithRating(itemsTest[i].exportAsPoint(), ratingsTest[i].p2) for i in range(len(ratingsTest))]
    
      # user2D:User2D, error:float
      user2DNewI, errorI = process(user2DI, estimateUserFnc, pointsWithRatingTrain, pointsWithRatingTest, linPrefModelConf, testID=testID)
      
      errors.append(errorI);

      if len(errors) == numberOfUsers:
        break;

  print("Mean: ", mean(errors))