Exemple #1
0
def preprocess(trainingSamples):
    global MS, IS
    XS = l.create_partial_XS(trainingSamples)
    MS = np.zeros((c.get_nb_teeth(), c.get_nb_dim()))
    IS = np.zeros((c.get_nb_teeth(), c.get_nb_dim()))

    for j in range(c.get_nb_teeth()):
        S = XS[j, :, :]
        M, Y = pa.PA(S)
        MS[j, :] = M

        mtx = mty = ms = mtheta = 0
        n = S.shape[0]
        for i in range(n):
            tx, ty, s, theta = mu.full_align_params(
                M, fu.original_to_cropped(S[i, :]))
            mtx += tx
            mty += ty
            ms += s
            mtheta += theta
        n = float(n)
        mtx /= n
        mty /= n
        ms /= n
        mtheta /= n
        IS[j, :] = mu.full_align(M, mtx, mty, ms, mtheta)
def preprocess(trainingSamples):
    '''
    Creates MS, EWS and fs, used by the fitting procedure
        * MS contains for each tooth, the tooth model (in the model coordinate frame)
        * EWS contains for each tooth, a (sqrt(Eigenvalues), Eigenvectors) pair (in the model coordinate frame)
        * fitting function for each tooth, for each landmark.
    '''
    global MS, EWS, fns, fts
    XS = l.create_partial_XS(trainingSamples)
    MS = np.zeros((c.get_nb_teeth(), c.get_nb_dim()))

    for j in range(c.get_nb_teeth()):
        S = XS[j, :, :]
        M, Y = pa.PA(S)
        MS[j, :] = M
        E, W, MU = pca.pca_percentage(Y)
        EWS.append((np.sqrt(E), W))

    GNS, GTS = ff.create_partial_GS_for_multiple_levels(trainingSamples,
                                                        XS,
                                                        MS, (max_level + 1),
                                                        offsetX=fu.offsetX,
                                                        offsetY=fu.offsetY,
                                                        k=k,
                                                        method=method)
    fns, fts = ff.create_fitting_functions_for_multiple_levels(GNS, GTS)
def create_partial_XS(trainingSamples):
    '''
    Creates an array that contains all the training samples
    corresponding to the given training samples and corresponding to all the teeth.
    @param trainingSamples:      the training samples
    @return np.array, shape=(nb of teeth, nb of training samples, nb of dimensions)
    '''
    XS = np.zeros(np.array([c.get_nb_teeth(), len(trainingSamples), c.get_nb_dim()]))
    for j in range(c.get_nb_teeth()):
        XS[j,:,:] = create_partial_X(trainingSamples, nr_tooth=(j+1))
    return XS
Exemple #4
0
def preprocess():
    '''
    Creates XS and MS, used by the drawing functions.
        * XS contains for each tooth, for each training sample, all landmarks (in the image coordinate frame)
        * MS contains for each tooth, the tooth model (in the model coordinate frame)
    '''
    global XS, MS
    XS = l.create_full_XS()
    MS = np.zeros((c.get_nb_teeth(), c.get_nb_dim()))
    for j in range(c.get_nb_teeth()):
        M, Y = pa.PA(l.create_full_X(j+1))
        MS[j,:] = M
def test2_combined():
    Results = np.zeros(
        (c.get_nb_trainingSamples(), 3 * c.get_nb_teeth(), c.get_nb_dim()))
    color_lines = np.array([
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
    ])
    for i in c.get_trainingSamples_range():
        trainingSamples = c.get_trainingSamples_range()
        trainingSamples.remove(i)
        preprocess(trainingSamples)

        fname = c.get_fname_vis_pre(i, method)
        img = cv2.imread(fname)

        for f in range(2):
            for j in range(c.get_nb_teeth()):
                fname = c.get_fname_original_landmark(i, (j + 1))
                P = fu.original_to_cropped(
                    np.fromfile(fname, dtype=float, count=-1, sep=' '))
                if f == 0: Results[(i - 1), j, :] = P
                Results[(i - 1), (f + 1) * c.get_nb_teeth() +
                        j, :] = multi_resolution_search(img,
                                                        P,
                                                        j,
                                                        fitting_function=f)

        fname = str(i) + 'm.png'
        cv2.imwrite(
            fname,
            fu.mark_results(np.copy(img), Results[(i - 1), :], color_lines))
Exemple #6
0
def classify_positives(method=''):
    XS = l.create_full_XS()
    
    for s in c.get_trainingSamples_range():
        trainingSamples = c.get_trainingSamples_range()
        trainingSamples.remove(s)
        try:
            info_name_upper = c.get_dir_prefix() + 'data/Visualizations/Classified Samples/info' + method + str(s) + '-u' + '.txt' 
            info_name_lower = c.get_dir_prefix() + 'data/Visualizations/Classified Samples/info' + method + str(s) + '-l' + '.txt' 

            info_file_upper = open(info_name_upper, "w")
            info_file_lower = open(info_name_lower, "w")
            
            for i in trainingSamples:
                
                s = ''    
                if (i < 10):
                    s = '0'
                img_name = s + str(i) + '.png'
                
                min_y = min_x = float("inf")
                max_y = max_x = 0

                for j in range(0, c.get_nb_teeth()/2):
                    x_coords, y_coords = mu.extract_coordinates(XS[j, i-1, :])
                    for k in range(c.get_nb_landmarks()):
                        if x_coords[k] < min_x: min_x = x_coords[k]
                        if x_coords[k] > max_x: max_x = x_coords[k]
                        if y_coords[k] < min_y: min_y = y_coords[k]
                        if y_coords[k] > max_y: max_y = y_coords[k]
                
                line = 'rawdata/' + method + img_name + ' 1 ' + str(int(min_x - fu.offsetX)) + ' ' + str(int(min_y - fu.offsetY)) + ' ' + str(int(max_x - min_x)) + ' ' + str(int(max_y - min_y)) + '\n' 
                info_file_upper.write(line)
                
                min_y = min_x = float("inf")
                max_y = max_x = 0
                
                for j in range(c.get_nb_teeth()/2, c.get_nb_teeth()):
                    x_coords, y_coords = mu.extract_coordinates(XS[j, i-1, :])
                    for k in range(c.get_nb_landmarks()):
                        if x_coords[k] < min_x: min_x = x_coords[k]
                        if x_coords[k] > max_x: max_x = x_coords[k]
                        if y_coords[k] < min_y: min_y = y_coords[k]
                        if y_coords[k] > max_y: max_y = y_coords[k] 
                
                line = 'rawdata/' + method + img_name + ' 1 ' + str(int(min_x - fu.offsetX)) + ' ' + str(int(min_y - fu.offsetY)) + ' ' + str(int(max_x - min_x)) + ' ' + str(int(max_y - min_y)) + '\n' 
                info_file_lower.write(line) 

        finally:
            info_file_upper.close()
            info_file_lower.close()
def create_fitting_functions(GNS, GTS):
    '''
    Creates the fitting function for each tooth, for each landmark.
    @param GNS:              the matrix GNS which contains for each tooth, for each of the given training samples,
                             for each landmark, a normalized sample (along the profile normal through that landmark)
    @param GTS:              the matrix GTS which contains for each tooth, for each of the given training samples,
                             for each landmark, a normalized sample (along the profile tangent through that landmark)
    @return The fitting functions for each tooth, for each landmark.
    '''
    fns = [[
        get_fitting_function(tooth, landmark, GNS)
        for landmark in range(c.get_nb_landmarks())
    ] for tooth in range(c.get_nb_teeth())]
    fts = [[
        get_fitting_function(tooth, landmark, GTS)
        for landmark in range(c.get_nb_landmarks())
    ] for tooth in range(c.get_nb_teeth())]
    return fns, fts
def create_fitting_functions_for_multiple_levels(L_GNS, L_GTS):
    '''
    Creates the fitting function for each level, for each tooth, for each landmark.
    @param L_GNS:            the matrix L_GNS which contains for each level, for each tooth, for each of the given training samples,
                             for each landmark, a normalized sample (along the profile normal through that landmark)
    @param L_GTS:            the matrix L_GTS which contains for each level, for each tooth, for each of the given training samples,
                             for each landmark, a normalized sample (along the profile tangent through that landmark)
    @return The fitting functions for each level, for each tooth, for each landmark.
    '''
    l_fns = [[[
        get_fitting_function(tooth, landmark, L_GNS[level, :])
        for landmark in range(c.get_nb_landmarks())
    ] for tooth in range(c.get_nb_teeth())] for level in range(L_GNS.shape[0])]
    l_fts = [[[
        get_fitting_function(tooth, landmark, L_GTS[level, :])
        for landmark in range(c.get_nb_landmarks())
    ] for tooth in range(c.get_nb_teeth())] for level in range(L_GTS.shape[0])]
    return l_fns, l_fts
def create_partial_GS(trainingSamples,
                      XS,
                      MS,
                      level=0,
                      offsetX=0,
                      offsetY=0,
                      k=5,
                      method=''):
    '''
    Creates the matrix GNS which contains for each tooth, for each of the given training samples,
    for each landmark, a normalized sample (along the profile normal through the landmarks).
    Creates the matrix GTS which contains for each tooth, for each of the given training samples,
    for each landmark, a normalized sample (along the profile tangent through the landmarks).
    @param trainingSamples: the number of the training samples (not the test training samples!)
    @param XS:              contains for each tooth, for each training sample, all landmarks (in the image coordinate frame)
    @param MS:              contains for each tooth, the tooth model (in the model coordinate frame)
    @param level:           the current level
    @param offsetX:         the possible offset in x direction (used when working with cropped images and non-cropped landmarks)
    @param offsetY:         the possible offset in y direction (used when working with cropped images and non-cropped landmarks)
    @param k:               the number of pixels to sample either side for each of the model points along the profile normal
    @param method:          the method used for preprocessing
    @return The matrix GNS which contains for each tooth, for each of the given training samples,
            for each landmark, a normalized sample (along the profile normal through that landmark).
            The matrix GTS which contains for each tooth, for each of the given training samples,
            for each landmark, a normalized sample (along the profile tangent through that landmark).
    '''
    GNS = np.zeros((c.get_nb_teeth(), len(trainingSamples),
                    c.get_nb_landmarks(), 2 * k + 1))
    GTS = np.zeros((c.get_nb_teeth(), len(trainingSamples),
                    c.get_nb_landmarks(), 2 * k + 1))
    for j in range(c.get_nb_teeth()):
        index = 0
        for i in trainingSamples:
            # model of tooth j from model coordinate frame to image coordinate frame
            xs, ys = mu.extract_coordinates(
                mu.full_align_with(MS[j], XS[j, index, :]))
            fname = c.get_fname_vis_pre(i, method)
            img = cv2.imread(fname)
            pyramid = gip.get_gaussian_pyramid_at(img, level)
            GN, GT = create_G(pyramid, k, xs, ys, offsetX, offsetY)
            GNS[j, index, :] = GN
            GTS[j, index, :] = GT
            index += 1
    return GNS, GTS
def create_partial_GS_for_multiple_levels(trainingSamples,
                                          XS,
                                          MS,
                                          nb_levels=1,
                                          offsetX=0,
                                          offsetY=0,
                                          k=5,
                                          method=''):
    '''
    Creates the matrix L_GNS which contains for each level, for each tooth, for each of the given training samples,
    for each landmark, a normalized sample (along the profile normal through the landmarks).
    Creates the matrix L_GTS which contains for each tooth, for each of the given training samples,
    for each landmark, a normalized sample (along the profile tangent through the landmarks).
    @param trainingSamples: the number of the training samples (not the test training samples!)
    @param XS:              contains for each tooth, for each training sample, all landmarks (in the image coordinate frame)
    @param MS:              contains for each tooth, the tooth model (in the model coordinate frame)
    @param nb_levels:           the number of levels
    @param offsetX:         the possible offset in x direction (used when working with cropped images and non-cropped landmarks)
    @param offsetY:         the possible offset in y direction (used when working with cropped images and non-cropped landmarks)
    @param k:               the number of pixels to sample either side for each of the model points along the profile normal
    @param method:          the method used for preprocessing
    @return The matrix L_GNS which contains for each level, for each tooth, for each of the given training samples,
            for each landmark, a normalized sample (along the profile normal through that landmark).
            The matrix L_GTS which contains for each level, for each tooth, for each of the given training samples,
            for each landmark, a normalized sample (along the profile tangent through that landmark).
    '''
    L_GNS = np.zeros((nb_levels, c.get_nb_teeth(), len(trainingSamples),
                      c.get_nb_landmarks(), 2 * k + 1))
    L_GTS = np.zeros((nb_levels, c.get_nb_teeth(), len(trainingSamples),
                      c.get_nb_landmarks(), 2 * k + 1))
    for i in range(nb_levels):
        GNS, GTS = create_partial_GS(trainingSamples,
                                     np.around(np.divide(XS, 2**i)),
                                     MS,
                                     i,
                                     offsetX=round(float(offsetX) / 2**i),
                                     offsetY=round(float(offsetY) / 2**i),
                                     k=k,
                                     method=method)
        L_GNS[i, :] = GNS
        L_GTS[i, :] = GTS
    return L_GNS, L_GTS
Exemple #11
0
def create_average_models(trainingSamples, method=''):
    XS = l.create_partial_XS(trainingSamples)
    MS = np.zeros((c.get_nb_teeth(), c.get_nb_dim()))
    IS = np.zeros((c.get_nb_teeth(), c.get_nb_dim()))
    
    for j in range(c.get_nb_teeth()):
        S = XS[j,:,:]
        M, Y = pa.PA(S)
        MS[j,:] = M
        
        mtx = mty = ms = mtheta = 0
        n = S.shape[0]
        for i in range(n):
            tx, ty, s, theta = mu.full_align_params(M, fu.original_to_cropped(S[i,:]))
            mtx += tx
            mty += ty
            ms += s
            mtheta += theta
        n = float(n)
        IS[j,:] = mu.full_align(M, (mtx / n), (mty / n), (ms / n), (mtheta / n))  
Exemple #12
0
def get_average_size(method=''):
    IBS = create_individual_bboxes(method)
    Avg = np.zeros((c.get_nb_teeth(), 2))
    for j in range(IBS.shape[0]):
        x = y = 0
        for i in range(IBS.shape[1]):
            x += IBS[j,i,1] - IBS[j,i,0]
            y += IBS[j,i,3] - IBS[j,i,2]
        Avg[j,0] = x / float(IBS.shape[1])
        Avg[j,1] = y / float(IBS.shape[1])
    return Avg      
Exemple #13
0
def create_landmarks_and_models_images(color_init=np.array([0,255,255]), color_mid=np.array([255,0,255]), color_end=np.array([255,255,0]), color_line=np.array([0,0,255]), color_model_line=np.array([255,0,0]), method=''):
    '''
    Stores all the preprocessed images corresponding to the given method with the landmarks
    of the training samples and models (transformed to the image coordinate system) marked.
    @param color_init:  the BGR color for the first landmark 
    @param color_mid:   the BGR color for all landmarks except the first and last landmark
    @param color_end:   the BGR color for the last landmark
    @param color_line:  the BGR color for the line between two consecutive landmarks of the training samples
    @param color_model_line:    the BGR color for the line between two consecutive landmarks of the models
    @param method:      the method used for preproccesing
    '''
    for i in c.get_trainingSamples_range():
        fname = c.get_fname_vis_pre(i, method)
        img = cv2.imread(fname)
        for j in range(c.get_nb_teeth()):
            xs, ys = mu.extract_coordinates(XS[j,(i-1),:])
            mxs, mys = mu.extract_coordinates(mu.full_align_with(MS[j], XS[j,(i-1),:]))
            
            for k in range(c.get_nb_landmarks()):
                x = int(xs[k] - offsetX)
                y = int(ys[k] - offsetY)
                mx = int(mxs[k] - offsetX)
                my = int(mys[k] - offsetY)
                if (k == c.get_nb_landmarks()-1):
                    x_succ = int(xs[0] - offsetX)
                    y_succ = int(ys[0] - offsetY)
                    mx_succ = int(mxs[0] - offsetX)
                    my_succ = int(mys[0] - offsetY)
                else:
                    x_succ = int(xs[(k+1)] - offsetX)
                    y_succ = int(ys[(k+1)] - offsetY)
                    mx_succ = int(mxs[(k+1)] - offsetX)
                    my_succ = int(mys[(k+1)] - offsetY)
                cv2.line(img, (x,y), (x_succ,y_succ), color_line)
                cv2.line(img, (mx,my), (mx_succ,my_succ), color_model_line)
          
            for k in range(c.get_nb_landmarks()):
                x = int(xs[k] - offsetX)
                y = int(ys[k] - offsetY)
                mx = int(mxs[k] - offsetX)
                my = int(mys[k] - offsetY)
                if (k == 0):
                    img[y,x] = color_init
                    img[my,mx] = color_init
                elif (k == c.get_nb_landmarks()-1):
                    img[y,x] = color_end
                    img[my,mx] = color_end
                else:
                    img[y,x] = color_mid
                    img[my,mx] = color_mid
                
            fname = c.get_fname_vis_ff_landmarks_and_models(i, method)
            cv2.imwrite(fname, img) 
Exemple #14
0
def create_profile_normals_images(k=5, color_init=np.array([0,255,255]), color_mid=np.array([255,0,255]), color_end=np.array([255,255,0]), color_line=np.array([255,0,0]), color_profile_point=np.array([0,255,0]), method=''):
    '''
    Stores all the preprocessed images corresponding to the given method with the landmarks
    of the models (transformed to the image coordinate system) and the points along the profile
    normals marked.
    @param k:                       the number of profile points along either side
                                    of the profile normal and profile tangent
    @param color_init:              the BGR color for the first landmark 
    @param color_mid:               the BGR color for all landmarks except the first and last landmark
    @param color_end:               the BGR color for the last landmark
    @param color_line:              the BGR color for the line between two consecutive landmarks
    @param color_profile_point:     the BGR color for the profile points
    @param method:                  the method used for preproccesing
    '''
    for i in c.get_trainingSamples_range():
        fname = c.get_fname_vis_pre(i, method)
        img = cv2.imread(fname)
        for j in range(c.get_nb_teeth()):
            xs, ys = mu.extract_coordinates(mu.full_align_with(MS[j], XS[j,(i-1),:]))
            
            for h in range(c.get_nb_landmarks()):
                x = int(xs[h] - offsetX)
                y = int(ys[h] - offsetY)
                if (h == c.get_nb_landmarks()-1):
                    x_succ = int(xs[0] - offsetX)
                    y_succ = int(ys[0] - offsetY)
                else:
                    x_succ = int(xs[(h+1)] - offsetX)
                    y_succ = int(ys[(h+1)] - offsetY)
                cv2.line(img, (x,y), (x_succ,y_succ), color_line)
          
            for h in range(c.get_nb_landmarks()):
                x = int(xs[h] - offsetX)
                y = int(ys[h] - offsetY)
                tx, ty, nx, ny = ff.create_ricos(img, h, xs, ys)
                for n in range(-k, k+1):
                    kx = round(x + n * nx)
                    ky = round(y + n * ny)
                    img[ky, kx] = color_profile_point
                for t in range(-k, k+1):
                    kx = round(x + t * tx)
                    ky = round(y + t * ty)
                    img[ky, kx] = color_profile_point
                
                if (h == 0):
                    img[y,x] = color_init
                elif (h == c.get_nb_landmarks()-1):
                    img[y,x] = color_end
                else:
                    img[y,x] = color_mid
                
            fname = c.get_fname_vis_ff_profile_normals(i, method)
            cv2.imwrite(fname, img) 
Exemple #15
0
def create_negatives(method=''):
    XS = l.create_full_XS()
    
    for i in c.get_trainingSamples_range():
        fname = c.get_fname_vis_pre(i, method)
        img = cv2.imread(fname)
        
        s = ''    
        if (i < 10): s = '0'
        
        min_y = min_x = float("inf")
        max_y = max_x = 0
    
        for j in range(0, c.get_nb_teeth()/2):
            x_coords, y_coords = mu.extract_coordinates(XS[j, i-1, :])
            for k in range(c.get_nb_landmarks()):
                if x_coords[k] < min_x: min_x = x_coords[k]
                if x_coords[k] > max_x: max_x = x_coords[k]
                if y_coords[k] < min_y: min_y = y_coords[k]
                if y_coords[k] > max_y: max_y = y_coords[k]
        
        fname = c.get_dir_prefix() + 'data/Visualizations/Classified Samples/' + method + str(s) + str(i) + '-l' + '.png'    
        cv2.imwrite(fname, img[max_y-fu.offsetY+1:,:])
        
        min_y = min_x = float("inf")
        max_y = max_x = 0
        
        for j in range(c.get_nb_teeth()/2, c.get_nb_teeth()):
            x_coords, y_coords = mu.extract_coordinates(XS[j, i-1, :])
            for k in range(c.get_nb_landmarks()):
                if x_coords[k] < min_x: min_x = x_coords[k]
                if x_coords[k] > max_x: max_x = x_coords[k]
                if y_coords[k] < min_y: min_y = y_coords[k]
                if y_coords[k] > max_y: max_y = y_coords[k] 
        
        fname = c.get_dir_prefix() + 'data/Visualizations/Classified Samples/' + method + str(s) + str(i) + '-u' + '.png'    
        cv2.imwrite(fname, img[:min_y-fu.offsetY,:])
Exemple #16
0
def test():
    for i in c.get_trainingSamples_range():
        trainingSamples = c.get_trainingSamples_range()
        trainingSamples.remove(i)
        preprocess(trainingSamples)

        fname = c.get_fname_vis_pre(i, method)
        img = cv2.imread(fname)

        for j in range(c.get_nb_teeth()):
            fname = c.get_fname_original_landmark(i, (j + 1))
            P = fu.original_to_cropped(
                np.fromfile(fname, dtype=float, count=-1, sep=' '))
            fname = str(i) + '-' + str((j + 1)) + '.png'
            cv2.imwrite(fname,
                        fu.show_iteration(np.copy(img), 10000, P, IS[j, :]))
def test1():
    for i in c.get_trainingSamples_range():
        trainingSamples = c.get_trainingSamples_range()
        trainingSamples.remove(i)
        preprocess(trainingSamples)

        fname = c.get_fname_vis_pre(i, method)
        img = cv2.imread(fname)

        for j in range(c.get_nb_teeth()):
            fname = c.get_fname_original_landmark(i, (j + 1))
            P = fu.original_to_cropped(
                np.fromfile(fname, dtype=float, count=-1, sep=' '))
            R = multi_resolution_search(img, P, j)
            fname = str(i) + '-' + str((j + 1)) + '.png'
            cv2.imwrite(fname, fu.mark_results(np.copy(img), np.array([P, R])))
def test3_combined():
    BS = cu.create_bboxes(method)
    Avg = cu.get_average_size(method)

    Results = np.zeros(
        (c.get_nb_trainingSamples(), 3 * c.get_nb_teeth(), c.get_nb_dim()))
    color_lines = np.array([
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 0, 255]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([0, 255, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
        np.array([255, 0, 0]),
    ])

    for i in c.get_trainingSamples_range():
        trainingSamples = c.get_trainingSamples_range()
        trainingSamples.remove(i)
        preprocess(trainingSamples)

        fname = c.get_fname_vis_pre(i, method)
        img = cv2.imread(fname)

        Params = cu.get_average_params(trainingSamples, method)

        x_min = BS[(i - 1), 0]
        x_max = BS[(i - 1), 1]
        y_min = BS[(i - 1), 2]
        y_max = BS[(i - 1), 3]
        ty = y_min + (y_max - y_min) / 2
        for j in range(c.get_nb_teeth() / 2):
            if j == 0: tx = x_min + Avg[0, 0] / 2.0
            if j == 1: tx = x_min + Avg[0, 0] + Avg[1, 0] / 2.0
            if j == 2: tx = x_max - Avg[3, 0] - Avg[2, 0] / 2.0
            if j == 3: tx = x_max - Avg[3, 0] / 2.0

            P = limit(
                img, mu.full_align(MS[j, :], tx, ty, Params[j, 2], Params[j,
                                                                          3]))

            fname = c.get_fname_original_landmark(i, (j + 1))
            I = fu.original_to_cropped(
                np.fromfile(fname, dtype=float, count=-1, sep=' '))
            Results[(i - 1), j, :] = I
            Results[(i - 1), c.get_nb_teeth() + j, :] = limit(
                img,
                multi_resolution_search(img, P,
                                        j))  #only limit for i=9: gigantic fail
            Results[(i - 1), 2 * c.get_nb_teeth() + j, :] = P

        x_min = BS[(i - 1), 4]
        x_max = BS[(i - 1), 5]
        y_min = BS[(i - 1), 6]
        y_max = BS[(i - 1), 7]
        ty = y_min + (y_max - y_min) / 2
        for j in range(c.get_nb_teeth() / 2, c.get_nb_teeth()):
            if j == 4: tx = x_min + Avg[4, 0] / 2.0
            if j == 5: tx = x_min + Avg[4, 0] + Avg[5, 0] / 2.0
            if j == 6: tx = x_max - Avg[7, 0] - Avg[6, 0] / 2.0
            if j == 7: tx = x_max - Avg[7, 0] / 2.0

            P = limit(
                img, mu.full_align(MS[j, :], tx, ty, Params[j, 2], Params[j,
                                                                          3]))

            fname = c.get_fname_original_landmark(i, (j + 1))
            I = fu.original_to_cropped(
                np.fromfile(fname, dtype=float, count=-1, sep=' '))
            Results[(i - 1), j, :] = I
            Results[(i - 1), c.get_nb_teeth() + j, :] = limit(
                img,
                multi_resolution_search(img, P,
                                        j))  #only limit for i=9: gigantic fail
            Results[(i - 1), 2 * c.get_nb_teeth() + j, :] = P

        fname = str(i) + 'c.png'
        cv2.imwrite(
            fname,
            fu.mark_results(np.copy(img), Results[(i - 1), :], color_lines))