def get():
	config = configuration_parser.parse()
	exec('max_depth=' + config.get(__name__, 'max_depth'),locals(),globals())
	min_samples_split = config.getint(__name__, 'min_samples_split')
	min_samples_leaf = config.getint(__name__, 'min_samples_leaf')
	criterion = config.get(__name__, 'split criterion')
	return tree.DecisionTreeRegressor(criterion=criterion,max_depth=max_depth,min_samples_leaf=min_samples_leaf,
	                                  min_samples_split=min_samples_split)
Exemple #2
0
def get():
    config = configuration_parser.parse()
    alpha = config.getfloat(__name__, 'alpha')
    coef0 = config.getint(__name__, 'coef0')
    degree = config.getint(__name__, 'degree')
    gamma = config.getfloat(__name__, 'gamma')
    kernel = config.get(__name__, 'kernel')
    model = KernelRidge(alpha=alpha, coef0=coef0, degree=degree, gamma=gamma, kernel=kernel, kernel_params=None)
    return model
Exemple #3
0
def get():
    config = configuration_parser.parse()
    exec('max_depth=' + config.get(__name__, 'max_depth'), locals(), globals())
    min_samples_split = config.getint(__name__, 'min_samples_split')
    min_samples_leaf = config.getint(__name__, 'min_samples_leaf')
    criterion = config.get(__name__, 'split criterion')
    return tree.DecisionTreeRegressor(criterion=criterion,
                                      max_depth=max_depth,
                                      min_samples_leaf=min_samples_leaf,
                                      min_samples_split=min_samples_split)
Exemple #4
0
def get():
	config = configuration_parser.parse()
	minmax = ast.literal_eval(config.get(__name__, 'minmax'))
	size = ast.literal_eval(config.get(__name__, 'size'))
	epochs = config.getint(__name__, 'epochs')
	show = config.getboolean(__name__, 'show')
	goal = config.getfloat(__name__, 'goal')
	exec('transf = [nl.trans.' + config.get(__name__, 'transfer_function') + '()]*len(size)',locals(),globals())
	train = config.get(__name__, 'training_algorithm')
	return model(nl.net.newff(minmax,size,transf),train,epochs,show,goal)
def get():
    config = configuration_parser.parse()
    estimators = config.getint(__name__, 'estimators')
    lr = config.getfloat(__name__, 'learning rate')
    loss = config.get(__name__, 'loss function')
    exec('max_depth=' + config.get(__name__, 'max_depth'), locals(), globals())
    min_samples_split = config.getint(__name__, 'min_samples_split')
    min_samples_leaf = config.getint(__name__, 'min_samples_leaf')
    return AdaBoostRegressor(DecisionTreeRegressor(max_depth=max_depth,min_samples_split=min_samples_split,
                                                   min_samples_leaf=min_samples_leaf),n_estimators=estimators,loss=loss,
                                                   learning_rate=lr)
Exemple #6
0
def get():
    config = configuration_parser.parse()
    estimators = config.getint(__name__, 'estimators')
    lr = config.getfloat(__name__, 'learning rate')
    loss = config.get(__name__, 'loss function')
    exec('max_depth=' + config.get(__name__, 'max_depth'), locals(), globals())
    min_samples_split = config.getint(__name__, 'min_samples_split')
    min_samples_leaf = config.getint(__name__, 'min_samples_leaf')
    return AdaBoostRegressor(DecisionTreeRegressor(
        max_depth=max_depth,
        min_samples_split=min_samples_split,
        min_samples_leaf=min_samples_leaf),
                             n_estimators=estimators,
                             loss=loss,
                             learning_rate=lr)
def get():
    config = configuration_parser.parse()
    estimators = config.getint(__name__, 'estimators')
    exec('max_depth = ' + config.get(__name__, 'max_depth'),locals(),globals())
    min_samples_split = config.getint(__name__, 'min_samples_split')
    min_samples_leaf = config.getint(__name__, 'min_samples_leaf')
    exec('max_leaf_nodes=' + config.get(__name__, 'max_leaf_nodes'),locals(),globals())
    jobs = config.getint(__name__, 'jobs')

    model = RandomForestRegressor(n_estimators=estimators,
                               max_depth=max_depth,
                               min_samples_split=min_samples_split,
                               min_samples_leaf=min_samples_leaf,
                               max_leaf_nodes=max_leaf_nodes,
                               n_jobs=jobs)
    return model
Exemple #8
0
def get():
    config = configuration_parser.parse()
    estimators = config.getint(__name__, 'estimators')
    exec('max_depth = ' + config.get(__name__, 'max_depth'), locals(),
         globals())
    min_samples_split = config.getint(__name__, 'min_samples_split')
    min_samples_leaf = config.getint(__name__, 'min_samples_leaf')
    exec('max_leaf_nodes=' + config.get(__name__, 'max_leaf_nodes'), locals(),
         globals())
    jobs = config.getint(__name__, 'jobs')

    model = RandomForestRegressor(n_estimators=estimators,
                                  max_depth=max_depth,
                                  min_samples_split=min_samples_split,
                                  min_samples_leaf=min_samples_leaf,
                                  max_leaf_nodes=max_leaf_nodes,
                                  n_jobs=jobs)
    return model
Exemple #9
0
def get():
    config = configuration_parser.parse()
    alpha = config.getfloat(__name__, 'alpha')
    gamma = config.getfloat(__name__, 'gamma')
    kernel = config.get(__name__, 'kernel')
    return KernelRidge(alpha=alpha, gamma=gamma, kernel=kernel)
def get():
    config = configuration_parser.parse()
    alpha = config.getfloat(__name__, 'alpha')
    gamma = config.getfloat(__name__, 'gamma')
    kernel = config.get(__name__, 'kernel')
    return KernelRidge(alpha=alpha,gamma=gamma,kernel=kernel)
Exemple #11
0
import configuration_parser
import importlib
import data_parser
import matplotlib
import sys
import numpy as np

if len(sys.argv) > 1:
    config = configuration_parser.parse(sys.argv[1])
else:
    config = configuration_parser.parse('default.conf')

parameter_names = ['model', 'data_path', 'save_path', 'Y', 'X', 'lwr_data_path', 'weights']

all_tests = config.get('AllTests', 'test_cases').split(',')

for case_name in all_tests:
    parameter_values = []
    for parameter in parameter_names:
        if parameter == 'weights':
            if config.has_option(case_name, parameter):
                parameter_values.append(config.getboolean(case_name, parameter))
            else:
                parameter_values.append(config.getboolean('AllTests', parameter))
        else:
            if config.has_option(case_name, parameter):
                parameter_values.append(config.get(case_name, parameter))
            else:
                parameter_values.append(config.get('AllTests', parameter))

    model, data_path, save_path, y_data, x_data, lwr_data_path, weights = parameter_values
import configuration_parser
import importlib
import data_parser
import matplotlib
import sys
import numpy as np

if len(sys.argv) > 1:
    config = configuration_parser.parse(sys.argv[1])
else:
    config = configuration_parser.parse('default.conf')

parameter_names = ['model', 'data_path', 'save_path', 'Y', 'X', 'lwr_data_path', 'weights']

all_tests = config.get('AllTests', 'test_cases').split(',')

for case_name in all_tests:
    parameter_values = []
    for parameter in parameter_names:
        if parameter == 'weights':
            if config.has_option(case_name, parameter):
                parameter_values.append(config.getboolean(case_name, parameter))
            else:
                parameter_values.append(config.getboolean('AllTests', parameter))
        else:
            if config.has_option(case_name, parameter):
                parameter_values.append(config.get(case_name, parameter))
            else:
                parameter_values.append(config.get('AllTests', parameter))

    model, data_path, save_path, y_data, x_data, lwr_data_path, weights = parameter_values