from __future__ import absolute_import, division, print_function import tensorflow as tf import numpy as np import os from sys import argv from console_logging.console import Console console = Console() usage = "You shouldn't be running this file." os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' console.setVerbosity(3) # only error, success, log script = 'predict.py' dataset_filename = './neuralnet/corpus/carnegie_mellon.csv' maxgpa = 5.0 maxtest = 2400 dataset_filename = str(dataset_filename) maxgpa = float(maxgpa) maxtest = int(maxtest) if dataset_filename[-4:] != ".csv": console.error("Filetype not recognized as CSV.") print(usage) exit(0) # Data sets DATA_TRAINING = dataset_filename DATA_TEST = dataset_filename ''' We are expecting features that are floats (gpa, sat, act) and outcomes that are integers (0 for reject, 1 for accept) '''
import pickle as pkl from console_logging.console import Console console = Console() ''' Preprocessing: remove everything except lettes spaces exclamations question marks @symbol Features: one hot encoded words one hot encoded capital words (if no capitals, 0) count of exlamation (!) and question mark (?) Later: one hot encoded mentions (@username) ''' # Debugging console.setVerbosity(4) # Training # console.setVerbosity(3) # Staging # console.setVerbosity(2) # Production # console.mute() # Neater logging inside VS Code console.timeless() console.monotone() DATASET_FILEPATH = 'data/text_emotion.csv' dataset_path = os.path.join(os.getcwd(), DATASET_FILEPATH) console.log("Loading data from %s" % dataset_path)
from streaming_event_compliance.services.visualization import visualization_deviation_automata from streaming_event_compliance.services.compliance_check import case_thread_cc from streaming_event_compliance.objects.variable.globalvar import gVars, CCM, CTM from streaming_event_compliance import app import threading from streaming_event_compliance.database import dbtools from streaming_event_compliance.objects.exceptions.exception import ThreadException from streaming_event_compliance.objects.logging.server_logging import ServerLogging import traceback import json import os import sys from console_logging.console import Console console = Console() console.setVerbosity(5) MAXIMUN_WINDOW_SIZE = app.config['MAXIMUN_WINDOW_SIZE'] THRESHOLD = app.config['THRESHOLD'] CLEINT_DATA_PATH = app.config['CLEINT_DATA_PATH'] AUTOMATA_FILE = app.config['AUTOMATA_FILE'] FILE_TYPE = app.config['FILE_TYPE'] threads_index = 0 def compliance_checker(client_uuid, event): """ Description: This function will do compliance checking for each event from the streaming data provided from client_uuid. It will first check the global variable 'autos', to check if tt's status is true, if it's false, that means the automata has not built, return this information into user; if it's true, then it will get initialed CCM(Case memory for 'client_uuid') and CTM(Thread memory for
from __future__ import absolute_import, division, print_function import tensorflow as tf import numpy as np import os import sys from console_logging.console import Console from sys import argv usage = "\nUsage:\npython neuralnet/main.py path/to/dataset.csv path/to/crossvalidation_dataset.csv #MAX_GPA #MAX_TEST_SCORE\n\nExample:\tpython main.py harvard.csv 6.0 2400\n\nThe dataset should have one column of GPA and one column of applicable test scores, no headers." console = Console() console.setVerbosity(3) # only logs success and error os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' try: script, dataset_filename, test_filename, maxgpa, maxtest = argv except: console.error(str(sys.exc_info()[0])) print(usage) exit(0) dataset_filename = str(dataset_filename) maxgpa = float(maxgpa) maxtest = int(maxtest) if dataset_filename[-4:] != ".csv": console.error("Filetype not recognized as CSV.") print(usage) exit(0) # Data sets