def train_networks(training_percentage, filename, experiment):

    stages = constants.training_stages

    (data, labels) = get_data(experiment, one_hot=True)

    total = len(data)
    step = total/stages

    # Amount of training data, from which a percentage is used for
    # validation.
    training_size = int(total*training_percentage)

    histories = []
    for n in range(stages):
        i = int(n*step)
        j = (i + training_size) % total

        training_data = get_data_in_range(data, i, j)
        training_labels = get_data_in_range(labels, i, j)
        testing_data = get_data_in_range(data, j, i)
        testing_labels = get_data_in_range(labels, j, i)

        truly_training = int(training_size*truly_training_percentage)

        validation_data = training_data[truly_training:]
        validation_labels = training_labels[truly_training:]
        training_data = training_data[:truly_training]
        training_labels = training_labels[:truly_training]
        
        input_img = Input(shape=(img_columns, img_rows, 1))
        encoded = get_encoder(input_img)
        classified = get_classifier(encoded)
        decoded = get_decoder(encoded)

        model = Model(inputs=input_img, outputs=[classified, decoded])

        model.compile(loss=['categorical_crossentropy', 'mean_squared_error'],
                    optimizer='adam',
                    metrics='accuracy')

        model.summary()

        history = model.fit(training_data,
                (training_labels, training_data),
                batch_size=batch_size,
                epochs=epochs,
                validation_data= (validation_data,
                    {'classification': validation_labels, 'autoencoder': validation_data}),
                callbacks=[EarlyStoppingAtLossCrossing(patience)],
                verbose=2)

        histories.append(history)
        history = model.evaluate(testing_data,
            (testing_labels, testing_data),return_dict=True)
        histories.append(history)

        model.save(constants.model_filename(filename, n))

    return histories
def remember(experiment, occlusion = None, bars_type = None, tolerance = 0):
    """ Creates images from features.
    
    Uses the decoder part of the neural networks to (re)create images from features.

    Parameters
    ----------
    experiment : TYPE
        DESCRIPTION.
    occlusion : TYPE, optional
        DESCRIPTION. The default is None.
    tolerance : TYPE, optional
        DESCRIPTION. The default is 0.

    Returns
    -------
    None.

    """

    for i in range(constants.training_stages):
        testing_data_filename = constants.data_name + constants.testing_suffix
        testing_data_filename = constants.data_filename(testing_data_filename, i)
        testing_features_filename = constants.features_name(experiment, occlusion, bars_type) + constants.testing_suffix
        testing_features_filename = constants.data_filename(testing_features_filename, i)
        testing_labels_filename = constants.labels_name + constants.testing_suffix
        testing_labels_filename = constants.data_filename(testing_labels_filename, i)
        memories_filename = constants.memories_name(experiment, occlusion, bars_type, tolerance)
        memories_filename = constants.data_filename(memories_filename, i)
        labels_filename = constants.labels_name + constants.memory_suffix
        labels_filename = constants.data_filename(labels_filename, i)
        model_filename = constants.model_filename(constants.model_name, i)

        testing_data = np.load(testing_data_filename)
        testing_features = np.load(testing_features_filename)
        testing_labels = np.load(testing_labels_filename)
        memories = np.load(memories_filename)
        labels = np.load(labels_filename)
        model = tf.keras.models.load_model(model_filename)

        # Drop the classifier.
        autoencoder = Model(model.input, model.output[1])
        autoencoder.summary()

        # Drop the encoder
        input_mem = Input(shape=(constants.domain, ))
        decoded = get_decoder(input_mem)
        decoder = Model(inputs=input_mem, outputs=decoded)
        decoder.summary()

        for dlayer, alayer in zip(decoder.layers[1:], autoencoder.layers[11:]):
            dlayer.set_weights(alayer.get_weights())

        produced_images = decoder.predict(testing_features)
        n = len(testing_labels)

        Parallel(n_jobs=constants.n_jobs, verbose=5)( \
            delayed(store_images)(original, produced, constants.testing_directory(experiment, occlusion, bars_type), i, j, label) \
                for (j, original, produced, label) in \
                    zip(range(n), testing_data, produced_images, testing_labels))

        total = len(memories)
        steps = len(constants.memory_fills)
        step_size = int(total/steps)

        for j in range(steps):
            print('Decoding memory size ' + str(j) + ' and stage ' + str(i))
            start = j*step_size
            end = start + step_size
            mem_data = memories[start:end]
            mem_labels = labels[start:end]
            produced_images = decoder.predict(mem_data)

            Parallel(n_jobs=constants.n_jobs, verbose=5)( \
                delayed(store_memories)(label, produced, features, constants.memories_directory(experiment, occlusion, bars_type, tolerance), i, j) \
                    for (produced, features, label) in zip(produced_images, mem_data, mem_labels))
def obtain_features(model_prefix, features_prefix, labels_prefix, data_prefix,
            training_percentage, am_filling_percentage, experiment,
            occlusion = None, bars_type = None):
    """ Generate features for images.
    
    Uses the previously trained neural networks for generating the features corresponding
    to the images. It may introduce occlusions.
    """
    stages = constants.training_stages

    (data, labels) = get_data(experiment, occlusion, bars_type)

    total = len(data)
    step = int(total/constants.training_stages)

    training_size = int(total*training_percentage)
    filling_size = int(total*am_filling_percentage)
    testing_size = total - training_size - filling_size

    histories = []
    for n in range(stages):
        i = int(n*step)
        j = (i+training_size) % total

        training_data = get_data_in_range(data, i, j)
        training_labels = get_data_in_range(labels, i, j)

        k = (j+filling_size) % total
        filling_data = get_data_in_range(data, j, k)
        filling_labels = get_data_in_range(labels, j, k)

        l = (k+testing_size) % total
        testing_data = get_data_in_range(data, k, l)
        testing_labels = get_data_in_range(labels, k, l)

        # Recreate the exact same model, including its weights and the optimizer
        model = tf.keras.models.load_model(constants.model_filename(model_prefix, n))

        # Drop the autoencoder and the last layers of the full connected neural network part.
        classifier = Model(model.input, model.output[0])
        no_hot = to_categorical(testing_labels)
        classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics='accuracy')
        history = classifier.evaluate(testing_data, no_hot, batch_size=batch_size, verbose=1, return_dict=True)
        print(history)
        histories.append(history)
        model = Model(classifier.input, classifier.layers[-4].output)
        model.summary()

        training_features = model.predict(training_data)
        if len(filling_data) > 0:
            filling_features = model.predict(filling_data)
        else:
            r, c = training_features.shape
            filling_features = np.zeros((0, c))
        testing_features = model.predict(testing_data)

        dict = {
            constants.training_suffix: (training_data, training_features, training_labels),
            constants.filling_suffix : (filling_data, filling_features, filling_labels),
            constants.testing_suffix : (testing_data, testing_features, testing_labels)
            }

        for suffix in dict:
            data_fn = constants.data_filename(data_prefix+suffix, n)
            features_fn = constants.data_filename(features_prefix+suffix, n)
            labels_fn = constants.data_filename(labels_prefix+suffix, n)

            d, f, l = dict[suffix]
            np.save(data_fn, d)
            np.save(features_fn, f)
            np.save(labels_fn, l)
    
    return histories
Exemple #4
0
def obtain_features(model_prefix,
                    features_prefix,
                    labels_prefix,
                    data_prefix,
                    training_percentage,
                    am_filling_percentage,
                    experiment,
                    occlusion=None,
                    bars_type=None):
    """ Generate features for images.
    
    Uses the previously trained neural networks for generating the features corresponding
    to the images. It may introduce occlusions.
    """
    (data, labels) = get_data(experiment, occlusion, bars_type)

    total = len(data)
    step = int(total / constants.training_stages)

    # Amount of data used for training the networks
    trdata = int(total * training_percentage)

    # Amount of data used for testing memories
    tedata = step

    n = 0
    histories = []
    for i in range(0, total, step):
        j = (i + tedata) % total

        if j > i:
            testing_data = data[i:j]
            testing_labels = labels[i:j]
            other_data = np.concatenate((data[0:i], data[j:total]), axis=0)
            other_labels = np.concatenate((labels[0:i], labels[j:total]),
                                          axis=0)
            training_data = other_data[:trdata]
            training_labels = other_labels[:trdata]
            filling_data = other_data[trdata:]
            filling_labels = other_labels[trdata:]
        else:
            testing_data = np.concatenate((data[0:j], data[i:total]), axis=0)
            testing_labels = np.concatenate((labels[0:j], labels[i:total]),
                                            axis=0)
            training_data = data[j:j + trdata]
            training_labels = labels[j:j + trdata]
            filling_data = data[j + trdata:i]
            filling_labels = labels[j + trdata:i]

        # Recreate the exact same model, including its weights and the optimizer
        model = tf.keras.models.load_model(
            constants.model_filename(model_prefix, n))

        # Drop the autoencoder and the last layers of the full connected neural network part.
        classifier = Model(model.input, model.output[0])
        no_hot = to_categorical(testing_labels)
        classifier.compile(optimizer='adam',
                           loss='categorical_crossentropy',
                           metrics='accuracy')
        history = classifier.evaluate(testing_data,
                                      no_hot,
                                      batch_size=batch_size,
                                      verbose=1,
                                      return_dict=True)
        print(history)
        histories.append(history)
        model = Model(classifier.input, classifier.layers[-4].output)
        model.summary()

        training_features = model.predict(training_data)
        if len(filling_data) > 0:
            filling_features = model.predict(filling_data)
        else:
            r, c = training_features.shape
            filling_features = np.zeros((0, c))
        testing_features = model.predict(testing_data)

        dict = {
            constants.training_suffix:
            (training_data, training_features, training_labels),
            constants.filling_suffix:
            (filling_data, filling_features, filling_labels),
            constants.testing_suffix:
            (testing_data, testing_features, testing_labels)
        }

        for suffix in dict:
            data_fn = constants.data_filename(data_prefix + suffix, n)
            features_fn = constants.data_filename(features_prefix + suffix, n)
            labels_fn = constants.data_filename(labels_prefix + suffix, n)

            d, f, l = dict[suffix]
            np.save(data_fn, d)
            np.save(features_fn, f)
            np.save(labels_fn, l)

        n += 1

    return histories
Exemple #5
0
def train_networks(training_percentage, filename, experiment):

    stages = constants.training_stages

    (data, labels) = get_data(experiment, one_hot=True)

    total = len(data)
    step = total / stages

    # Amount of training data, from which a percentage is used for
    # validation.
    training_size = int(total * training_percentage)

    n = 0
    histories = []
    for k in range(stages):
        i = k * step
        j = int(i + training_size) % total
        i = int(i)

        if j > i:
            training_data = data[i:j]
            training_labels = labels[i:j]
            testing_data = np.concatenate((data[0:i], data[j:total]), axis=0)
            testing_labels = np.concatenate((labels[0:i], labels[j:total]),
                                            axis=0)
        else:
            training_data = np.concatenate((data[i:total], data[0:j]), axis=0)
            training_labels = np.concatenate((labels[i:total], labels[0:j]),
                                             axis=0)
            testing_data = data[j:i]
            testing_labels = labels[j:i]

        training_data, training_labels = expand_data(training_data,
                                                     training_labels)
        truly_training = int(training_size * truly_training_percentage)

        validation_data = training_data[truly_training:]
        validation_labels = training_labels[truly_training:]
        training_data = training_data[:truly_training]
        training_labels = training_labels[:truly_training]

        input_img = Input(shape=(img_columns, img_rows, img_colors))
        encoded = get_encoder(input_img)
        classified = get_classifier(encoded)
        decoded = get_decoder(encoded)

        model = Model(inputs=input_img, outputs=[classified, decoded])
        model.compile(loss=['categorical_crossentropy', 'binary_crossentropy'],
                      optimizer='adam',
                      metrics='accuracy')
        model.summary()

        history = model.fit(training_data, (training_labels, training_data),
                            batch_size=batch_size,
                            epochs=epochs,
                            validation_data=(validation_data, {
                                'classification': validation_labels,
                                'autoencoder': validation_data
                            }),
                            callbacks=[EarlyStoppingAtLossCrossing(patience)],
                            verbose=2)

        histories.append(history)
        history = model.evaluate(testing_data, (testing_labels, testing_data),
                                 return_dict=True)
        histories.append(history)

        model.save(constants.model_filename(filename, n))
        n += 1

    return histories