Exemple #1
0
        dtype=theano.config.floatX) * preprocess['Xstd']) + preprocess['Xmean']
    
    def style_transfer(H, V):
        s, c =  style_amount, 1.0
        s, c = s / (s + c), c / (s + c)
        return s * T.mean((gram_matrix(H) - G)**2) + c * T.mean((H - network_C[0](C))**2)

    Xstyl = (S * preprocess['Xstd']) + preprocess['Xmean']
    Xcntn = (C * preprocess['Xstd']) + preprocess['Xmean']
    Xtrsf = N
    Xtrsf = constrain(Xtrsf, network_C[0], network_C[1], preprocess, style_transfer, iterations=250, alpha=0.01)
    
    Xtrsfvel = np.mean(np.sqrt(Xtrsf[:,-7:-6]**2 + Xtrsf[:,-6:-5]**2), axis=2)[:,:,np.newaxis]
    Xcntnvel = np.mean(np.sqrt(Xcntn[:,-7:-6]**2 + Xcntn[:,-6:-5]**2), axis=2)[:,:,np.newaxis]
    
    Xtail = Xtrsfvel * (Xcntn[:,-7:] / Xcntnvel)
    Xtail[:,-5:] = Xcntn[:,-5:]
    
    Xtrsf = constrain(Xtrsf, network_C[0], network_C[1], preprocess, multiconstraint(
        foot_sliding(Xtail[:,-4:]),
        joint_lengths(),
        trajectory(Xtail[:,:3])), alpha=0.01, iterations=100)
    Xtrsf[:,-7:] = Xtail
    
    Xstyl = np.concatenate([Xstyl, Xstyl], axis=2)
    
    from AnimationPlot import animation_plot
    
    animation_plot([Xstyl, Xcntn, Xtrsf], interval=15.15)
        
# 2021
# 13283

for _ in range(10):

    index = rng.randint(X.shape[0].eval())
    print(index)
    Xorgi = np.array(X[index:index + 1].eval())
    Xnois = ((Xorgi * rng.binomial(size=Xorgi.shape, n=1, p=0.5)) /
             0.5).astype(theano.config.floatX)
    Xrecn = np.array(network(Xnois).eval())

    Xorgi = (Xorgi * preprocess['Xstd']) + preprocess['Xmean']
    Xnois = (Xnois * preprocess['Xstd']) + preprocess['Xmean']
    Xrecn = (Xrecn * preprocess['Xstd']) + preprocess['Xmean']

    Xrecn = constrain(Xrecn,
                      network[0],
                      network[1],
                      preprocess,
                      multiconstraint(foot_sliding(Xorgi[:, -4:].copy()),
                                      joint_lengths(),
                                      trajectory(Xorgi[:, -7:-4])),
                      alpha=0.01,
                      iterations=50)

    Xrecn[:, -7:-4] = Xorgi[:, -7:-4]

    animation_plot([Xnois, Xrecn, Xorgi], interval=15.15)
Exemple #3
0
batchsize = 1
window = X.shape[2]

X = theano.shared(X, borrow=True)

network = create_core(batchsize=batchsize, window=window, dropout=0.0, depooler=lambda x,**kw: x/2)
network.load(np.load('network_core.npz'))

from AnimationPlot import animation_plot

for _ in range(10):

    index = rng.randint(X.shape[0].eval())
    Xorgi = np.array(X[index:index+1].eval())
    Xnois = Xorgi.copy()
    Xnois[:,16*3-1:17*3] = 0.0
    Xrecn = np.array(network(Xnois).eval())    

    Xorgi = (Xorgi * preprocess['Xstd']) + preprocess['Xmean']
    Xnois = (Xnois * preprocess['Xstd']) + preprocess['Xmean']
    Xrecn = (Xrecn * preprocess['Xstd']) + preprocess['Xmean']

    Xrecn = constrain(Xrecn, network[0], network[1], preprocess, multiconstraint(
        foot_sliding(Xorgi[:,-4:].copy()),
        joint_lengths(),
        trajectory(Xorgi[:,-7:-4])), alpha=0.01, iterations=50)

    Xrecn[:,-7:-4] = Xorgi[:,-7:-4]
        
    animation_plot([Xnois, Xrecn, Xorgi], interval=15.15)
        
Exemple #4
0
    network_first, network_second, network = create_network(
        batchsize=T.shape[0], window=T.shape[2], hidden=T.shape[1])
    network_func = theano.function([input],
                                   network(input),
                                   allow_input_downcast=True)

    start = time.clock()
    X = network_func(T)
    X = (X * preprocess['Xstd']) + preprocess['Xmean']
    Xtail = (T * preprocess['Xstd'][:, -7:]) + preprocess['Xmean'][:, -7:]
    X = constrain(X,
                  network_second[0],
                  network_second[1],
                  preprocess,
                  multiconstraint(foot_sliding(Xtail[:, -4:]), joint_lengths(),
                                  trajectory(Xtail[:, :3])),
                  alpha=0.01,
                  iterations=10)
    X[:, -7:] = Xtail

    #############

    animation_plot([X[0:1, :, :200], X[10:11, :, :200], X[20:21, :, :200]],
                   interval=15.15)

    X = np.swapaxes(X, 1, 2)

    joints = X[:, :, :-7].reshape((X.shape[0], X.shape[1], -1, 3))
    joints = -Quaternions(
        data[scene + '_rot'][:, cstart:cend])[:, :, np.newaxis] * joints
Exemple #5
0
    #Y shape:(1,12,240)
    network_func = theano.function([], network(Y[i:i + 1]))
    Y_pad_ori = np.array(Y_pad[i:i + 1])
    Xorig = np.array(X[i:i + 1])
    print('X shape: ', X.shape)
    #X shape: 121,73,240
    print('Xorig shape: ', Xorig.shape)
    #Xorig shape : 1,73,240
    start = time.clock()
    print('before network_func')
    Xrecn = network_func()
    # meaning that Y is inserted into network function then output will be Xrecn
    print('Xrecn shape: ', Xrecn.shape)
    #Xrecn shape: (1,73,240)
    Xorig = (Xorig * preprocess['Xstd']) + preprocess['Xmean']
    Xrecn = (Xrecn * preprocess['Xstd']) + preprocess['Xmean']
    Y_pad_ori = (Y_pad_ori * preprocess['Xstd']) + preprocess['Xmean']
    print
    print('before constrain')
    #here Xrecn already same as Xorig, but next is add constraint
    Xrecn = constrain(Xrecn,
                      network_second[0],
                      network_second[1],
                      preprocess,
                      multiconstraint(foot_sliding(Xrecn[:, -4:].copy()),
                                      joint_lengths()),
                      alpha=0.01,
                      iterations=50)
    #print(data_kicking_cmu[i])
    animation_plot([Xorig], interval=15.15)
Exemple #6
0
    print('Footsteps: %0.4f' % (time.clock() - start))

    #############

    network_first, network_second, network = create_network(
        Torig.shape[2], Torig.shape[1])
    network_func = theano.function([input],
                                   network(input),
                                   allow_input_downcast=True)

    start = time.clock()
    Xrecn = network_func(Torig)
    Xrecn = (Xrecn * preprocess['Xstd']) + preprocess['Xmean']
    Xtraj = ((Torig * preprocess['Xstd'][:, -7:]) +
             preprocess['Xmean'][:, -7:]).copy()
    print('Synthesis: %0.4f' % (time.clock() - start))

    Xnonc = Xrecn.copy()
    Xrecn = constrain(Xrecn,
                      network_second[0],
                      network_second[1],
                      preprocess,
                      multiconstraint(foot_sliding(Xtraj[:, -4:]),
                                      trajectory(Xtraj[:, :3]),
                                      joint_lengths()),
                      alpha=0.01,
                      iterations=250)
    Xrecn[:, -7:] = Xtraj

    animation_plot([Xnonc, Xrecn], interval=15.15)
Exemple #7
0
feet = np.array([9,10,11,12,13,14,21,22,23,24,25,26])

Y = X[:,feet]

batchsize = 1
window = X.shape[2]

network_first = create_regressor(batchsize=batchsize, window=window, input=Y.shape[1], dropout=0.0)
network_second = create_core(batchsize=batchsize, window=window, dropout=0.0, depooler=lambda x,**kw:x/2)
network_second.load(np.load('network_core.npz'))
network = Network(network_first, network_second[1], params=network_first.params)
network.load(np.load('network_regression_kick.npz'))

from AnimationPlot import animation_plot

for i in range(len(X)):

    network_func = theano.function([], network(Y[i:i+1]))

    Xorig = np.array(X[i:i+1])
    start = time.clock()
    Xrecn = network_func()
    Xorig = (Xorig * preprocess['Xstd']) + preprocess['Xmean']
    Xrecn = (Xrecn * preprocess['Xstd']) + preprocess['Xmean']
    Xrecn = constrain(Xrecn, network_second[0], network_second[1], preprocess, multiconstraint(
        foot_sliding(Xrecn[:,-4:].copy()),
        joint_lengths()), alpha=0.01, iterations=50)
    
    animation_plot([Xorig, Xrecn], interval=15.15)

Exemple #8
0
 Xnois = np.concatenate([Xnois_Torso[:,0:3,:], Xnois_Leftleg, Xnois_Rightleg, Xnois_Torso[:,3:15,:], Xnois_Leftarm, Xnois_Rightarm, Xorgi[:,63:73,:]],axis=1)
 print(Xnois.shape)
 Xrecn = np.concatenate([Xrecn_Torso[:,0:3,:], Xrecn_Leftleg, Xrecn_Rightleg, Xrecn_Torso[:,3:15,:], Xrecn_Leftarm, Xrecn_Rightarm, Xorgi[:,63:73,:]], axis=1)
 
 
 Xorgi = (Xorgi * preprocess['Xstd']) + preprocess['Xmean']
 Xnois = (Xnois * preprocess['Xstd']) + preprocess['Xmean']
 Xrecn = (Xrecn * preprocess['Xstd']) + preprocess['Xmean']
 
 np.save("./denoise/Xorgi.npy",Xorgi)
 np.save("./denoise/Xnois.npy",Xnois)
 
 print(Xorgi[:,-7:-4].shape)
 # H'=argmin[Pos(H)+Bone(H)+Traj(H)]
 Xrecn = constrain(Xrecn, network[0], network[1], preprocess, multiconstraint(
     foot_sliding(Xorgi[:,-4:].copy()),#foot sliding information(-4,-3,-2,-1)
     joint_lengths(),
     trajectory(Xorgi[:,-7:-4])), alpha=0.01, iterations=50)#input trajectory(-7,-6,-5)
 
 Xrecn[:,-7:-4] = Xorgi[:,-7:-4]
 
 np.save("./denoise/Xrecn.npy",Xrecn)
 print("construction done")
 
 animation_plot([Xnois, Xrecn, Xorgi], interval=15.15)
 
 """
 Xnois = ((Xorgi * rng.binomial(size=Xorgi.shape, n=1, p=0.5)) / 0.5).astype(theano.config.floatX)
 #Xnois = (Xorgi + 0.05*np.random.randn(1,73,240)+0.1).astype(theano.config.floatX)
 Xrecn = np.array(network(Xnois).eval())    
 #print(Xrecn.shape)