def __init__(self, q, name, modulus=None): """ Create finite field of order `q` with variable printed as name. EXAMPLES:: sage: from sage.rings.finite_rings.finite_field_ext_pari import FiniteField_ext_pari sage: k = FiniteField_ext_pari(9, 'a'); k Finite Field in a of size 3^2 """ if element_ext_pari.dynamic_FiniteField_ext_pariElement is None: element_ext_pari._late_import() from constructor import FiniteField as GF q = integer.Integer(q) if q < 2: raise ArithmeticError, "q must be a prime power" from sage.structure.proof.all import arithmetic proof = arithmetic() if proof: F = q.factor() else: from sage.rings.arith import is_pseudoprime_small_power F = is_pseudoprime_small_power(q, get_data=True) if len(F) != 1: raise ArithmeticError, "q must be a prime power" if F[0][1] > 1: base_ring = GF(F[0][0]) else: raise ValueError, "The size of the finite field must not be prime." #base_ring = self FiniteField_generic.__init__(self, base_ring, name, normalize=True) self._kwargs = {} self.__char = F[0][0] self.__pari_one = pari.pari(1).Mod(self.__char) self.__degree = integer.Integer(F[0][1]) self.__order = q self.__is_field = True if modulus is None or modulus == "default": from constructor import exists_conway_polynomial if exists_conway_polynomial(self.__char, self.__degree): modulus = "conway" else: modulus = "random" if isinstance(modulus,str): if modulus == "conway": from constructor import conway_polynomial modulus = conway_polynomial(self.__char, self.__degree) elif modulus == "random": # The following is fast/deterministic, but has serious problems since # it crashes on 64-bit machines, and I can't figure out why: # self.__pari_modulus = pari.pari.finitefield_init(self.__char, self.__degree, self.variable_name()) # So instead we iterate through random polys until we find an irreducible one. R = GF(self.__char)['x'] while True: modulus = R.random_element(self.__degree) modulus = modulus.monic() if modulus.degree() == self.__degree and modulus.is_irreducible(): break else: raise ValueError("Modulus parameter not understood") elif isinstance(modulus, (list, tuple)): modulus = GF(self.__char)['x'](modulus) elif sage.rings.polynomial.polynomial_element.is_Polynomial(modulus): if modulus.parent() is not base_ring: modulus = modulus.change_ring(base_ring) else: raise ValueError("Modulus parameter not understood") self.__modulus = modulus f = pari.pari(str(modulus)) self.__pari_modulus = f.subst(modulus.parent().variable_name(), 'a') * self.__pari_one self.__gen = element_ext_pari.FiniteField_ext_pariElement(self, pari.pari('a')) self._zero_element = self._element_constructor_(0) self._one_element = self._element_constructor_(1)
def __init__(self, q, name, modulus=None): """ Create finite field of order q with variable printed as name. INPUT: - ``q`` -- integer, size of the finite field, not prime - ``name`` -- variable used for printing element of the finite field. Also, two finite fields are considered equal if they have the same variable name, and not otherwise. - ``modulus`` -- you may provide a polynomial to use for reduction or a string: 'conway': force the use of a Conway polynomial, will raise a RuntimeError if none is found in the database; 'random': use a random irreducible polynomial. 'default': a Conway polynomial is used if found. Otherwise a random polynomial is used. OUTPUT: - FiniteField_ext_pari -- a finite field of order q with given variable name. EXAMPLES:: sage: FiniteField(65537) Finite Field of size 65537 sage: FiniteField(2^20, 'c') Finite Field in c of size 2^20 sage: FiniteField(3^11, "b") Finite Field in b of size 3^11 sage: FiniteField(3^11, "b").gen() b You can also create a finite field using GF, which is a synonym for FiniteField. :: sage: GF(19^5, 'a') Finite Field in a of size 19^5 """ if element_ext_pari.dynamic_FiniteField_ext_pariElement is None: element_ext_pari._late_import() from constructor import FiniteField as GF q = integer.Integer(q) if q < 2: raise ArithmeticError, "q must be a prime power" from sage.structure.proof.all import arithmetic proof = arithmetic() if proof: F = q.factor() else: from sage.rings.arith import is_pseudoprime_small_power F = is_pseudoprime_small_power(q, get_data=True) if len(F) != 1: raise ArithmeticError, "q must be a prime power" if F[0][1] > 1: base_ring = GF(F[0][0]) else: raise ValueError, "The size of the finite field must not be prime." #base_ring = self FiniteField_generic.__init__(self, base_ring, name, normalize=True) self._kwargs = {} self.__char = F[0][0] self.__pari_one = pari.pari(1).Mod(self.__char) self.__degree = integer.Integer(F[0][1]) self.__order = q self.__is_field = True if modulus is None or modulus == "default": from constructor import exists_conway_polynomial if exists_conway_polynomial(self.__char, self.__degree): modulus = "conway" else: modulus = "random" if isinstance(modulus, str): if modulus == "conway": from constructor import conway_polynomial modulus = conway_polynomial(self.__char, self.__degree) elif modulus == "random": # The following is fast/deterministic, but has serious problems since # it crashes on 64-bit machines, and I can't figure out why: # self.__pari_modulus = pari.pari.finitefield_init(self.__char, self.__degree, self.variable_name()) # So instead we iterate through random polys until we find an irreducible one. R = GF(self.__char)['x'] while True: modulus = R.random_element(self.__degree) modulus = modulus.monic() if modulus.degree( ) == self.__degree and modulus.is_irreducible(): break else: raise ValueError("Modulus parameter not understood") elif isinstance(modulus, (list, tuple)): modulus = GF(self.__char)['x'](modulus) elif sage.rings.polynomial.polynomial_element.is_Polynomial(modulus): if modulus.parent() is not base_ring: modulus = modulus.change_ring(base_ring) else: raise ValueError("Modulus parameter not understood") self.__modulus = modulus f = pari.pari(str(modulus)) self.__pari_modulus = f.subst(modulus.parent().variable_name(), 'a') * self.__pari_one self.__gen = element_ext_pari.FiniteField_ext_pariElement( self, pari.pari('a')) self._zero_element = self._element_constructor_(0) self._one_element = self._element_constructor_(1)
def __init__(self, q, name, modulus=None): """ Create finite field of order q with variable printed as name. INPUT: - ``q`` -- integer, size of the finite field, not prime - ``name`` -- variable used for printing element of the finite field. Also, two finite fields are considered equal if they have the same variable name, and not otherwise. - ``modulus`` -- you may provide a polynomial to use for reduction or a string: 'conway': force the use of a Conway polynomial, will raise a RuntimeError if none is found in the database; 'random': use a random irreducible polynomial. 'default': a Conway polynomial is used if found. Otherwise a random polynomial is used. OUTPUT: - FiniteField_ext_pari -- a finite field of order q with given variable name. EXAMPLES:: sage: FiniteField(65537) Finite Field of size 65537 sage: FiniteField(2^20, 'c') Finite Field in c of size 2^20 sage: FiniteField(3^11, "b") Finite Field in b of size 3^11 sage: FiniteField(3^11, "b").gen() b You can also create a finite field using GF, which is a synonym for FiniteField. :: sage: GF(19^5, 'a') Finite Field in a of size 19^5 """ if element_ext_pari.dynamic_FiniteField_ext_pariElement is None: element_ext_pari._late_import() from constructor import FiniteField as GF q = integer.Integer(q) if q < 2: raise ArithmeticError, "q must be a prime power" from sage.structure.proof.all import arithmetic proof = arithmetic() if proof: F = q.factor() else: from sage.rings.arith import is_pseudoprime_small_power F = is_pseudoprime_small_power(q, get_data=True) if len(F) != 1: raise ArithmeticError, "q must be a prime power" if F[0][1] > 1: base_ring = GF(F[0][0]) else: raise ValueError, "The size of the finite field must not be prime." #base_ring = self FiniteField_generic.__init__(self, base_ring, name, normalize=True) self._kwargs = {} self.__char = F[0][0] self.__pari_one = pari.pari(1).Mod(self.__char) self.__degree = integer.Integer(F[0][1]) self.__order = q self.__is_field = True if modulus is None or modulus == "default": from constructor import exists_conway_polynomial if exists_conway_polynomial(self.__char, self.__degree): modulus = "conway" else: modulus = "random" if isinstance(modulus,str): if modulus == "conway": from constructor import conway_polynomial modulus = conway_polynomial(self.__char, self.__degree) elif modulus == "random": # The following is fast/deterministic, but has serious problems since # it crashes on 64-bit machines, and I can't figure out why: # self.__pari_modulus = pari.pari.finitefield_init(self.__char, self.__degree, self.variable_name()) # So instead we iterate through random polys until we find an irreducible one. R = GF(self.__char)['x'] while True: modulus = R.random_element(self.__degree) modulus = modulus.monic() if modulus.degree() == self.__degree and modulus.is_irreducible(): break else: raise ValueError("Modulus parameter not understood") elif isinstance(modulus, (list, tuple)): modulus = GF(self.__char)['x'](modulus) elif sage.rings.polynomial.polynomial_element.is_Polynomial(modulus): if modulus.parent() is not base_ring: modulus = modulus.change_ring(base_ring) else: raise ValueError("Modulus parameter not understood") self.__modulus = modulus f = pari.pari(str(modulus)) self.__pari_modulus = f.subst(modulus.parent().variable_name(), 'a') * self.__pari_one self.__gen = element_ext_pari.FiniteField_ext_pariElement(self, pari.pari('a')) self._zero_element = self._element_constructor_(0) self._one_element = self._element_constructor_(1)
def __init__(self, q, name, modulus=None): """ Create finite field of order `q` with variable printed as name. EXAMPLES:: sage: from sage.rings.finite_rings.finite_field_ext_pari import FiniteField_ext_pari sage: k = FiniteField_ext_pari(9, 'a'); k Finite Field in a of size 3^2 """ if element_ext_pari.dynamic_FiniteField_ext_pariElement is None: element_ext_pari._late_import() from constructor import FiniteField as GF q = integer.Integer(q) if q < 2: raise ArithmeticError, "q must be a prime power" from sage.structure.proof.all import arithmetic proof = arithmetic() if proof: F = q.factor() else: from sage.rings.arith import is_pseudoprime_small_power F = is_pseudoprime_small_power(q, get_data=True) if len(F) != 1: raise ArithmeticError, "q must be a prime power" if F[0][1] > 1: base_ring = GF(F[0][0]) else: raise ValueError, "The size of the finite field must not be prime." #base_ring = self FiniteField_generic.__init__(self, base_ring, name, normalize=True) self._kwargs = {} self.__char = F[0][0] self.__pari_one = pari.pari(1).Mod(self.__char) self.__degree = integer.Integer(F[0][1]) self.__order = q self.__is_field = True if modulus is None or modulus == "default": from constructor import exists_conway_polynomial if exists_conway_polynomial(self.__char, self.__degree): modulus = "conway" else: modulus = "random" if isinstance(modulus, str): if modulus == "conway": from constructor import conway_polynomial modulus = conway_polynomial(self.__char, self.__degree) elif modulus == "random": # The following is fast/deterministic, but has serious problems since # it crashes on 64-bit machines, and I can't figure out why: # self.__pari_modulus = pari.pari.finitefield_init(self.__char, self.__degree, self.variable_name()) # So instead we iterate through random polys until we find an irreducible one. R = GF(self.__char)['x'] while True: modulus = R.random_element(self.__degree) modulus = modulus.monic() if modulus.degree( ) == self.__degree and modulus.is_irreducible(): break else: raise ValueError("Modulus parameter not understood") elif isinstance(modulus, (list, tuple)): modulus = GF(self.__char)['x'](modulus) elif sage.rings.polynomial.polynomial_element.is_Polynomial(modulus): if modulus.parent() is not base_ring: modulus = modulus.change_ring(base_ring) else: raise ValueError("Modulus parameter not understood") self.__modulus = modulus f = pari.pari(str(modulus)) self.__pari_modulus = f.subst(modulus.parent().variable_name(), 'a') * self.__pari_one self.__gen = element_ext_pari.FiniteField_ext_pariElement( self, pari.pari('a')) self._zero_element = self._element_constructor_(0) self._one_element = self._element_constructor_(1)