Exemple #1
0
    def __init__(self, tf_sess_target=""):
        with graph.as_default():
            asset_path("encoder.index")
            asset_path("encoder.meta")
            p = asset_path("encoder.data-00000-of-00001")
            p = os.path.join(os.path.dirname(p), "encoder")

            self.sess = tf.Session(tf_sess_target)
            variables = slim.get_variables_to_restore()
            saver = tf.train.Saver(variables)
            saver.restore(self.sess, p)

        with open(asset_path("pca-coef.pickle"), "rb") as f:
            # encoding='latin1' fixs the incompatibility of numpy between Python 2 and 3
            # see more: https://stackoverflow.com/a/41366785
            def load(f):
                if sys.version_info.major == 2:
                    return pickle.load(f)
                else:
                    return pickle.load(f, encoding='latin1')

            _ = load(f)
            _ = load(f)
            _ = load(f)
            _ = load(f)
            _ = load(f)
            _ = load(f)
            self.coef = load(f)
            self.pca = load(f)

        self.sslst = {}
        with open(asset_path("filter33.lst"), "r") as f:
            for line in f:
                self.sslst[line.strip()] = 1
Exemple #2
0
    def __init__(self, db_fn=None, cutoff=12):
        """ Init the Searcher Instance. If db_fn is not indicated, it automatically download
        contactlib-l4-g0-c2-d7.db as default database.
        """
        if db_fn is None:
            db_fn = asset_path("contactlib-l4-g0-c2-d7.db")
        
        if os.getenv("ENV") == "Development":
            cur_dir = os.path.dirname(os.path.realpath(__file__))
            lib_fn = os.path.join(cur_dir, "libsearch.so")
        else:
            if platform.system() == "Darwin":
                libsearch = "libsearch-2.1-macOS.so"
            elif platform.system() == "Linux":
                libsearch = "libsearch-2.1-linux-amd64.so"
            else:
                raise Exception("Unsupported platform! Please try it under Linux.")
            lib_fn = asset_path(libsearch)

        self.lib = CDLL(lib_fn)
        self.lib.newDB.restype = c_uint64 # void * is 64 bit, but the defualt type is unint32

        self.db = self.lib.newDB(db_fn.encode(), cutoff)
Exemple #3
0
def convertPDB(pdbfn):
    if platform.system() == "Darwin":
        cmd = asset_path("dssp-2.0.4-macOS")
    elif platform.system() == "Linux":
        cmd = asset_path("dssp-2.0.4-linux-amd64")
    else:
        raise Exception("Unsupported platform! Please try it under Linux.")

    pdbid = os.path.basename(pdbfn).replace(".pdb", "").upper()
    model = PDBParser(PERMISSIVE=1).get_structure(pdbid, pdbfn)[0]

    dsspfn = pdbfn.replace(".pdb", ".dssp")
    subprocess.check_call([cmd, '-i', pdbfn, '-o', dsspfn])

    dssp, keys = make_dssp_dict(dsspfn)
    idx, res, ss = [], [], []
    for k in keys:
        try:
            i, r, s, c = k[1][1], dssp[k][0], dssp[k][1], model[k[0]][
                k[1]]["CA"].get_coord()
            idx.append(i)
            res.append(r)
            ss.append(s)
        except KeyError:
            pass

    fafn = pdbfn.replace(".pdb", ".fa")
    with open(fafn, "w") as f:
        f.write(">%s\n" % pdbid)
        tmp = "".join(res)
        while tmp:
            if len(tmp) > 120:
                f.write("%s\n" % tmp[:120])
                tmp = tmp[120:]
            else:
                f.write("%s\n" % tmp)
                tmp = ""
Exemple #4
0
#! /usr/bin/env python

from __future__ import print_function, absolute_import

import sys

from contactlib.search import Searcher
from contactlib.encoder import Encoder
from contactlib.common import convertPDB
from contactlib.data_manger import asset_path

e = Encoder()
s = Searcher()

# build ContactLib fingerprint file
e.encode(asset_path("3aa0a.pdb"), "3aa0a.cl")

# scan ContactLib for homologous proteins, and store the similarity scores
s.search("3aa0a.cl", "output.txt")
Exemple #5
0
#! /usr/bin/env python

from __future__ import print_function, absolute_import

import sys

from contactlib import Searcher, Encoder
from contactlib.common import convertPDB
from contactlib.data_manger import asset_path

e = Encoder()
s = Searcher()

# generate FASTA and DSSP files, given a PDB file
convertPDB(asset_path("3aa0a.pdb"))

# build ContactLib fingerprint file
e.encode(asset_path("3aa0a.pdb"), "3aa0a.cl")

# scan ContactLib for homologous proteins, and store the similarity scores
s.search("3aa0a.cl", "output.txt")