Exemple #1
0
    def testSigmoid(self):
        m1 = fnn.FlowSequential(fnn.Sigmoid())

        x = torch.randn(BATCH_SIZE, NUM_INPUTS)

        y, logdets = m1(x)
        z, inv_logdets = m1(y, mode='inverse')

        self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
                        'Sigmoid Det is not zero.')
        self.assertTrue((x - z).abs().max() < EPS, 'Sigmoid is wrong.')
Exemple #2
0
    def testInv(self):
        m1 = fnn.FlowSequential(fnn.InvertibleMM(NUM_INPUTS))

        x = torch.randn(BATCH_SIZE, NUM_INPUTS)

        y, logdets = m1(x)
        z, inv_logdets = m1(y, mode='inverse')

        self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
                        'InvMM Det is not zero.')
        self.assertTrue((x - z).abs().max() < EPS, 'InvMM is wrong.')
Exemple #3
0
    def testCoupling(self):
        m1 = fnn.FlowSequential(fnn.CouplingLayer(NUM_INPUTS, NUM_HIDDEN,
                                                  mask))

        x = torch.randn(BATCH_SIZE, NUM_INPUTS)

        y, logdets = m1(x)
        z, inv_logdets = m1(y, mode='inverse')

        self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
                        'CouplingLayer Det is not zero.')
        self.assertTrue((x - z).abs().max() < EPS, 'CouplingLayer is wrong')
Exemple #4
0
    def testBatchNorm(self):
        m1 = fnn.FlowSequential(fnn.BatchNormFlow(NUM_INPUTS))
        m1.train()

        x = torch.randn(BATCH_SIZE, NUM_INPUTS)

        y, logdets = m1(x)
        z, inv_logdets = m1(y, mode='inverse')

        self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
                        'BatchNorm Det is not zero.')
        self.assertTrue((x - z).abs().max() < EPS, 'BatchNorm is wrong.')

        # Second run.
        x = torch.randn(BATCH_SIZE, NUM_INPUTS)

        y, logdets = m1(x)
        z, inv_logdets = m1(y, mode='inverse')

        self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
                        'BatchNorm Det is not zero for the second run.')
        self.assertTrue((x - z).abs().max() < EPS,
                        'BatchNorm is wrong for the second run.')

        m1.eval()
        m1 = fnn.FlowSequential(fnn.BatchNormFlow(NUM_INPUTS))

        x = torch.randn(BATCH_SIZE, NUM_INPUTS)

        y, logdets = m1(x)
        z, inv_logdets = m1(y, mode='inverse')

        self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
                        'BatchNorm Det is not zero in eval.')
        self.assertTrue((x - z).abs().max() < EPS,
                        'BatchNorm is wrong in eval.')
Exemple #5
0
    def testSequentialBN(self):
        m1 = fnn.FlowSequential(
            fnn.BatchNormFlow(NUM_INPUTS), fnn.InvertibleMM(NUM_INPUTS),
            fnn.CouplingLayer(NUM_INPUTS, NUM_HIDDEN, mask))

        m1.train()
        x = torch.randn(BATCH_SIZE, NUM_INPUTS)

        y, logdets = m1(x)
        z, inv_logdets = m1(y, mode='inverse')

        self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
                        'Sequential BN Det is not zero.')
        self.assertTrue((x - z).abs().max() < EPS, 'Sequential BN is wrong.')

        # Second run.
        x = torch.randn(BATCH_SIZE, NUM_INPUTS)

        y, logdets = m1(x)
        z, inv_logdets = m1(y, mode='inverse')

        self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
                        'Sequential BN Det is not zero for the second run.')
        self.assertTrue((x - z).abs().max() < EPS,
                        'Sequential BN is wrong for the second run.')

        m1.eval()
        # Eval run.
        x = torch.randn(BATCH_SIZE, NUM_INPUTS)

        y, logdets = m1(x)
        z, inv_logdets = m1(y, mode='inverse')

        self.assertTrue((logdets + inv_logdets).abs().max() < EPS,
                        'Sequential BN Det is not zero for the eval run.')
        self.assertTrue((x - z).abs().max() < EPS,
                        'Sequential is wrong for the eval run.')