def test_flat_default_output(self, vehicle_flat):
        # Construct a flat system with the default outputs
        flatsys = fs.FlatSystem(vehicle_flat.forward,
                                vehicle_flat.reverse,
                                vehicle_flat.updfcn,
                                inputs=vehicle_flat.ninputs,
                                outputs=vehicle_flat.ninputs,
                                states=vehicle_flat.nstates)

        # Define the endpoints of the trajectory
        x0 = [0., -2., 0.]
        u0 = [10., 0.]
        xf = [100., 2., 0.]
        uf = [10., 0.]
        Tf = 10

        # Find trajectory between initial and final conditions
        poly = fs.PolyFamily(6)
        traj1 = fs.point_to_point(vehicle_flat, Tf, x0, u0, xf, uf, basis=poly)
        traj2 = fs.point_to_point(flatsys, Tf, x0, u0, xf, uf, basis=poly)

        # Verify that the trajectory computation is correct
        T = np.linspace(0, Tf, 10)
        x1, u1 = traj1.eval(T)
        x2, u2 = traj2.eval(T)
        np.testing.assert_array_almost_equal(x1, x2)
        np.testing.assert_array_almost_equal(u1, u2)

        # Run a simulation and verify that the outputs are correct
        resp1 = ct.input_output_response(vehicle_flat, T, u1, x0)
        resp2 = ct.input_output_response(flatsys, T, u1, x0)
        np.testing.assert_array_almost_equal(resp1.outputs[0:2], resp2.outputs)
Exemple #2
0
    def test_kinematic_car(self, vehicle_flat, poly):
        # Define the endpoints of the trajectory
        x0 = [0., -2., 0.]
        u0 = [10., 0.]
        xf = [100., 2., 0.]
        uf = [10., 0.]
        Tf = 10

        # Find trajectory between initial and final conditions
        traj = fs.point_to_point(vehicle_flat, Tf, x0, u0, xf, uf, basis=poly)

        # Verify that the trajectory computation is correct
        x, u = traj.eval([0, Tf])
        np.testing.assert_array_almost_equal(x0, x[:, 0])
        np.testing.assert_array_almost_equal(u0, u[:, 0])
        np.testing.assert_array_almost_equal(xf, x[:, 1])
        np.testing.assert_array_almost_equal(uf, u[:, 1])

        # Simulate the system and make sure we stay close to desired traj
        T = np.linspace(0, Tf, 500)
        xd, ud = traj.eval(T)

        # For SciPy 1.0+, integrate equations and compare to desired
        if StrictVersion(sp.__version__) >= "1.0":
            t, y, x = ct.input_output_response(vehicle_flat,
                                               T,
                                               ud,
                                               x0,
                                               return_x=True)
            np.testing.assert_allclose(x, xd, atol=0.01, rtol=0.01)
    def test_double_integrator(self):
        # Define a second order integrator
        sys = ct.StateSpace([[-1, 1], [0, -2]], [[0], [1]], [[1, 0]], 0)
        flatsys = fs.LinearFlatSystem(sys)

        # Define the endpoints of a trajectory
        x1 = [0, 0]; u1 = [0]; T1 = 1
        x2 = [1, 0]; u2 = [0]; T2 = 2
        x3 = [0, 1]; u3 = [0]; T3 = 3
        x4 = [1, 1]; u4 = [1]; T4 = 4

        # Define the basis set
        poly = fs.PolyFamily(6)

        # Plan trajectories for various combinations
        for x0, u0, xf, uf, Tf in [
            (x1, u1, x2, u2, T2), (x1, u1, x3, u3, T3), (x1, u1, x4, u4, T4)]:
            traj = fs.point_to_point(flatsys, x0, u0, xf, uf, Tf, basis=poly)

            # Verify that the trajectory computation is correct
            x, u = traj.eval([0, Tf])
            np.testing.assert_array_almost_equal(x0, x[:, 0])
            np.testing.assert_array_almost_equal(u0, u[:, 0])
            np.testing.assert_array_almost_equal(xf, x[:, 1])
            np.testing.assert_array_almost_equal(uf, u[:, 1])

            # Simulate the system and make sure we stay close to desired traj
            T = np.linspace(0, Tf, 100)
            xd, ud = traj.eval(T)

            t, y, x = ct.forced_response(sys, T, ud, x0)
            np.testing.assert_array_almost_equal(x, xd, decimal=3)
Exemple #4
0
def time_steering_point_to_point(basis_name, basis_size):
    if basis_name == 'poly':
        basis = flat.PolyFamily(basis_size)
    elif basis_name == 'bezier':
        basis = flat.BezierFamily(basis_size)

    # Find trajectory between initial and final conditions
    traj = flat.point_to_point(vehicle, Tf, x0, u0, xf, uf, basis=basis)

    # Verify that the trajectory computation is correct
    x, u = traj.eval([0, Tf])
    np.testing.assert_array_almost_equal(x0, x[:, 0])
    np.testing.assert_array_almost_equal(u0, u[:, 0])
    np.testing.assert_array_almost_equal(xf, x[:, 1])
    np.testing.assert_array_almost_equal(uf, u[:, 1])
    def test_response(self, xf, uf, Tf):
        # Define a second order integrator
        sys = ct.StateSpace([[-1, 1], [0, -2]], [[0], [1]], [[1, 0]], 0)
        flatsys = fs.LinearFlatSystem(sys)

        # Define the basis set
        poly = fs.PolyFamily(6)

        x1, u1, = [0, 0], [0]
        traj = fs.point_to_point(flatsys, Tf, x1, u1, xf, uf, basis=poly)

        # Compute the response the regular way
        T = np.linspace(0, Tf, 10)
        x, u = traj.eval(T)

        # Recompute using response()
        response = traj.response(T, squeeze=False)
        np.testing.assert_equal(T, response.time)
        np.testing.assert_equal(u, response.inputs)
        np.testing.assert_equal(x, response.states)
Exemple #6
0
def time_steering_cost():
    # Define cost and constraints
    traj_cost = opt.quadratic_cost(vehicle, None, np.diag([0.1, 1]), u0=uf)
    constraints = [opt.input_range_constraint(vehicle, [8, -0.1], [12, 0.1])]

    traj = flat.point_to_point(vehicle,
                               timepts,
                               x0,
                               u0,
                               xf,
                               uf,
                               cost=traj_cost,
                               constraints=constraints,
                               basis=flat.PolyFamily(8))

    # Verify that the trajectory computation is correct
    x, u = traj.eval([0, Tf])
    np.testing.assert_array_almost_equal(x0, x[:, 0])
    np.testing.assert_array_almost_equal(u0, u[:, 0])
    np.testing.assert_array_almost_equal(xf, x[:, 1])
    np.testing.assert_array_almost_equal(uf, u[:, 1])
Exemple #7
0
    def test_double_integrator(self, xf, uf, Tf):
        # Define a second order integrator
        sys = ct.StateSpace([[-1, 1], [0, -2]], [[0], [1]], [[1, 0]], 0)
        flatsys = fs.LinearFlatSystem(sys)

        # Define the basis set
        poly = fs.PolyFamily(6)

        x1, u1, = [0, 0], [0]
        traj = fs.point_to_point(flatsys, Tf, x1, u1, xf, uf, basis=poly)

        # Verify that the trajectory computation is correct
        x, u = traj.eval([0, Tf])
        np.testing.assert_array_almost_equal(x1, x[:, 0])
        np.testing.assert_array_almost_equal(u1, u[:, 0])
        np.testing.assert_array_almost_equal(xf, x[:, 1])
        np.testing.assert_array_almost_equal(uf, u[:, 1])

        # Simulate the system and make sure we stay close to desired traj
        T = np.linspace(0, Tf, 100)
        xd, ud = traj.eval(T)

        t, y, x = ct.forced_response(sys, T, ud, x1, return_x=True)
        np.testing.assert_array_almost_equal(x, xd, decimal=3)
Exemple #8
0
                             inputs=('v', 'delta'),
                             outputs=('x', 'y', 'theta'),
                             states=('x', 'y', 'theta'))

# Define the endpoints of the trajectory
x0 = [0., -2., 0.]
u0 = [10., 0.]
xf = [40., 2., 0.]
uf = [10., 0.]
Tf = 4

# Define a set of basis functions to use for the trajectories
poly = fs.PolyFamily(6)

# Find a trajectory between the initial condition and the final condition
traj = fs.point_to_point(vehicle_flat, x0, u0, xf, uf, Tf, basis=poly)

# Create the desired trajectory between the initial and final condition
T = np.linspace(0, Tf, 500)
xd, ud = traj.eval(T)

# Simulation the open system dynamics with the full input
t, y, x = ct.input_output_response(vehicle_flat, T, ud, x0, return_x=True)

# Plot the open loop system dynamics
plt.figure()
plt.suptitle("Open loop trajectory for kinematic car lane change")

# Plot the trajectory in xy coordinates
plt.subplot(4, 1, 2)
plt.plot(x[0], x[1])
Exemple #9
0
    def test_point_to_point_errors(self):
        """Test error and warning conditions in point_to_point()"""
        # Double integrator system
        sys = ct.ss([[0, 1], [0, 0]], [[0], [1]], [[1, 0]], 0)
        flat_sys = fs.LinearFlatSystem(sys)

        # Define the endpoints of the trajectory
        x0 = [1, 0]
        u0 = [0]
        xf = [0, 0]
        uf = [0]
        Tf = 10
        T = np.linspace(0, Tf, 500)

        # Cost function
        timepts = np.linspace(0, Tf, 10)
        cost_fcn = opt.quadratic_cost(flat_sys,
                                      np.diag([1, 1]),
                                      1,
                                      x0=xf,
                                      u0=uf)

        # Solving without basis specified should be OK
        traj = fs.point_to_point(flat_sys, timepts, x0, u0, xf, uf)
        x, u = traj.eval(timepts)
        np.testing.assert_array_almost_equal(x0, x[:, 0])
        np.testing.assert_array_almost_equal(u0, u[:, 0])
        np.testing.assert_array_almost_equal(xf, x[:, -1])
        np.testing.assert_array_almost_equal(uf, u[:, -1])

        # Adding a cost function generates a warning
        with pytest.warns(UserWarning, match="optimization not possible"):
            traj = fs.point_to_point(flat_sys,
                                     timepts,
                                     x0,
                                     u0,
                                     xf,
                                     uf,
                                     cost=cost_fcn)

        # Make sure we still solved the problem
        x, u = traj.eval(timepts)
        np.testing.assert_array_almost_equal(x0, x[:, 0])
        np.testing.assert_array_almost_equal(u0, u[:, 0])
        np.testing.assert_array_almost_equal(xf, x[:, -1])
        np.testing.assert_array_almost_equal(uf, u[:, -1])

        # Try to optimize with insufficient degrees of freedom
        with pytest.warns(UserWarning, match="optimization not possible"):
            traj = fs.point_to_point(flat_sys,
                                     timepts,
                                     x0,
                                     u0,
                                     xf,
                                     uf,
                                     cost=cost_fcn,
                                     basis=fs.PolyFamily(6))

        # Make sure we still solved the problem
        x, u = traj.eval(timepts)
        np.testing.assert_array_almost_equal(x0, x[:, 0])
        np.testing.assert_array_almost_equal(u0, u[:, 0])
        np.testing.assert_array_almost_equal(xf, x[:, -1])
        np.testing.assert_array_almost_equal(uf, u[:, -1])

        # Solve with the errors in the various input arguments
        with pytest.raises(ValueError, match="Initial state: Wrong shape"):
            traj = fs.point_to_point(flat_sys, timepts, np.zeros(3), u0, xf,
                                     uf)
        with pytest.raises(ValueError, match="Initial input: Wrong shape"):
            traj = fs.point_to_point(flat_sys, timepts, x0, np.zeros(3), xf,
                                     uf)
        with pytest.raises(ValueError, match="Final state: Wrong shape"):
            traj = fs.point_to_point(flat_sys, timepts, x0, u0, np.zeros(3),
                                     uf)
        with pytest.raises(ValueError, match="Final input: Wrong shape"):
            traj = fs.point_to_point(flat_sys, timepts, x0, u0, xf,
                                     np.zeros(3))

        # Different ways of describing constraints
        constraint = opt.input_range_constraint(flat_sys, -100, 100)

        with pytest.warns(UserWarning, match="optimization not possible"):
            traj = fs.point_to_point(flat_sys,
                                     timepts,
                                     x0,
                                     u0,
                                     xf,
                                     uf,
                                     constraints=constraint,
                                     basis=fs.PolyFamily(6))

        x, u = traj.eval(timepts)
        np.testing.assert_array_almost_equal(x0, x[:, 0])
        np.testing.assert_array_almost_equal(u0, u[:, 0])
        np.testing.assert_array_almost_equal(xf, x[:, -1])
        np.testing.assert_array_almost_equal(uf, u[:, -1])

        # Constraint that isn't a constraint
        with pytest.raises(TypeError, match="must be a list"):
            traj = fs.point_to_point(flat_sys,
                                     timepts,
                                     x0,
                                     u0,
                                     xf,
                                     uf,
                                     constraints=np.eye(2),
                                     basis=fs.PolyFamily(8))

        # Unknown constraint type
        with pytest.raises(TypeError, match="unknown constraint type"):
            traj = fs.point_to_point(flat_sys,
                                     timepts,
                                     x0,
                                     u0,
                                     xf,
                                     uf,
                                     constraints=[(None, 0, 0, 0)],
                                     basis=fs.PolyFamily(8))

        # Unsolvable optimization
        constraint = [opt.input_range_constraint(flat_sys, -0.01, 0.01)]
        with pytest.raises(RuntimeError, match="Unable to solve optimal"):
            traj = fs.point_to_point(flat_sys,
                                     timepts,
                                     x0,
                                     u0,
                                     xf,
                                     uf,
                                     constraints=constraint,
                                     basis=fs.PolyFamily(8))

        # Method arguments, parameters
        traj_method = fs.point_to_point(flat_sys,
                                        timepts,
                                        x0,
                                        u0,
                                        xf,
                                        uf,
                                        cost=cost_fcn,
                                        basis=fs.PolyFamily(8),
                                        minimize_method='slsqp')
        traj_kwarg = fs.point_to_point(flat_sys,
                                       timepts,
                                       x0,
                                       u0,
                                       xf,
                                       uf,
                                       cost=cost_fcn,
                                       basis=fs.PolyFamily(8),
                                       minimize_kwargs={'method': 'slsqp'})
        np.testing.assert_allclose(traj_method.eval(timepts)[0],
                                   traj_kwarg.eval(timepts)[0],
                                   atol=1e-5)

        # Unrecognized keywords
        with pytest.raises(TypeError, match="unrecognized keyword"):
            traj_method = fs.point_to_point(flat_sys,
                                            timepts,
                                            x0,
                                            u0,
                                            xf,
                                            uf,
                                            solve_ivp_method=None)
Exemple #10
0
    def test_flat_cost_constr(self):
        # Double integrator system
        sys = ct.ss([[0, 1], [0, 0]], [[0], [1]], [[1, 0]], 0)
        flat_sys = fs.LinearFlatSystem(sys)

        # Define the endpoints of the trajectory
        x0 = [1, 0]
        u0 = [0]
        xf = [0, 0]
        uf = [0]
        Tf = 10
        T = np.linspace(0, Tf, 500)

        # Find trajectory between initial and final conditions
        traj = fs.point_to_point(flat_sys,
                                 Tf,
                                 x0,
                                 u0,
                                 xf,
                                 uf,
                                 basis=fs.PolyFamily(8))
        x, u = traj.eval(T)

        np.testing.assert_array_almost_equal(x0, x[:, 0])
        np.testing.assert_array_almost_equal(u0, u[:, 0])
        np.testing.assert_array_almost_equal(xf, x[:, -1])
        np.testing.assert_array_almost_equal(uf, u[:, -1])

        # Solve with a cost function
        timepts = np.linspace(0, Tf, 10)
        cost_fcn = opt.quadratic_cost(flat_sys,
                                      np.diag([0, 0]),
                                      1,
                                      x0=xf,
                                      u0=uf)

        traj_cost = fs.point_to_point(
            flat_sys,
            timepts,
            x0,
            u0,
            xf,
            uf,
            cost=cost_fcn,
            basis=fs.PolyFamily(8),
            # initial_guess='lstsq',
            # minimize_kwargs={'method': 'trust-constr'}
        )

        # Verify that the trajectory computation is correct
        x_cost, u_cost = traj_cost.eval(T)
        np.testing.assert_array_almost_equal(x0, x_cost[:, 0])
        np.testing.assert_array_almost_equal(u0, u_cost[:, 0])
        np.testing.assert_array_almost_equal(xf, x_cost[:, -1])
        np.testing.assert_array_almost_equal(uf, u_cost[:, -1])

        # Make sure that we got a different answer than before
        assert np.any(np.abs(x - x_cost) > 0.1)

        # Re-solve with constraint on the y deviation
        lb, ub = [-2, -0.1], [2, 0]
        lb, ub = [-2, np.min(x_cost[1]) * 0.95], [2, 1]
        constraints = [opt.state_range_constraint(flat_sys, lb, ub)]

        # Make sure that the previous solution violated at least one constraint
        assert np.any(x_cost[0, :] < lb[0]) or np.any(x_cost[0, :] > ub[0]) \
            or np.any(x_cost[1, :] < lb[1]) or np.any(x_cost[1, :] > ub[1])

        traj_const = fs.point_to_point(
            flat_sys,
            timepts,
            x0,
            u0,
            xf,
            uf,
            cost=cost_fcn,
            constraints=constraints,
            basis=fs.PolyFamily(8),
        )

        # Verify that the trajectory computation is correct
        x_const, u_const = traj_const.eval(T)
        np.testing.assert_array_almost_equal(x0, x_const[:, 0])
        np.testing.assert_array_almost_equal(u0, u_const[:, 0])
        np.testing.assert_array_almost_equal(xf, x_const[:, -1])
        np.testing.assert_array_almost_equal(uf, u_const[:, -1])

        # Make sure that the solution respects the bounds (with some slop)
        for i in range(x_const.shape[0]):
            assert np.all(x_const[i] >= lb[i] * 1.02)
            assert np.all(x_const[i] <= ub[i] * 1.02)

        # Solve the same problem with a nonlinear constraint type
        nl_constraints = [(sp.optimize.NonlinearConstraint, lambda x, u: x, lb,
                           ub)]
        traj_nlconst = fs.point_to_point(
            flat_sys,
            timepts,
            x0,
            u0,
            xf,
            uf,
            cost=cost_fcn,
            constraints=nl_constraints,
            basis=fs.PolyFamily(8),
        )
        x_nlconst, u_nlconst = traj_nlconst.eval(T)
        np.testing.assert_almost_equal(x_const, x_nlconst)
        np.testing.assert_almost_equal(u_const, u_nlconst)
Exemple #11
0
# velocity $v$ and steering wheel angle $\delta$ at the endpoints.

# In[ ]:

# Define the endpoints of the trajectory
x0 = [0., 2., 0.]
u0 = [15, 0.]
xf = [75, -2., 0.]
uf = [15, 0.]
Tf = xf[0] / uf[0]

# Define a set of basis functions to use for the trajectories
poly = fs.PolyFamily(8)

# Find a trajectory between the initial condition and the final condition
traj1 = fs.point_to_point(vehicle_flat, Tf, x0, u0, xf, uf, basis=poly)
plot_vehicle_lanechange(traj1)

# ### Change of basis function

# In[ ]:

bezier = fs.BezierFamily(8)
traj2 = fs.point_to_point(vehicle_flat, Tf, x0, u0, xf, uf, basis=bezier)
plot_vehicle_lanechange(traj2)

# ###  Added cost function

# In[ ]:

timepts = np.linspace(0, Tf, 12)
    def test_kinematic_car(self):
        """Differential flatness for a kinematic car"""
        def vehicle_flat_forward(x, u, params={}):
            b = params.get('wheelbase', 3.)  # get parameter values
            zflag = [np.zeros(3), np.zeros(3)]  # list for flag arrays
            zflag[0][0] = x[0]  # flat outputs
            zflag[1][0] = x[1]
            zflag[0][1] = u[0] * np.cos(x[2])  # first derivatives
            zflag[1][1] = u[0] * np.sin(x[2])
            thdot = (u[0] / b) * np.tan(u[1])  # dtheta/dt
            zflag[0][2] = -u[0] * thdot * np.sin(x[2])  # second derivatives
            zflag[1][2] = u[0] * thdot * np.cos(x[2])
            return zflag

        def vehicle_flat_reverse(zflag, params={}):
            b = params.get('wheelbase', 3.)  # get parameter values
            x = np.zeros(3)
            u = np.zeros(2)  # vectors to store x, u
            x[0] = zflag[0][0]  # x position
            x[1] = zflag[1][0]  # y position
            x[2] = np.arctan2(zflag[1][1], zflag[0][1])  # angle
            u[0] = zflag[0][1] * np.cos(x[2]) + zflag[1][1] * np.sin(x[2])
            thdot_v = zflag[1][2] * np.cos(x[2]) - zflag[0][2] * np.sin(x[2])
            u[1] = np.arctan2(thdot_v, u[0]**2 / b)
            return x, u

        def vehicle_update(t, x, u, params):
            b = params.get('wheelbase', 3.)  # get parameter values
            dx = np.array([
                np.cos(x[2]) * u[0],
                np.sin(x[2]) * u[0], (u[0] / b) * np.tan(u[1])
            ])
            return dx

        def vehicle_output(t, x, u, params):
            return x

        # Create differentially flat input/output system
        vehicle_flat = fs.FlatSystem(vehicle_flat_forward,
                                     vehicle_flat_reverse,
                                     vehicle_update,
                                     vehicle_output,
                                     inputs=('v', 'delta'),
                                     outputs=('x', 'y', 'theta'),
                                     states=('x', 'y', 'theta'))

        # Define the endpoints of the trajectory
        x0 = [0., -2., 0.]
        u0 = [10., 0.]
        xf = [100., 2., 0.]
        uf = [10., 0.]
        Tf = 10

        # Define a set of basis functions to use for the trajectories
        poly = fs.PolyFamily(6)

        # Find trajectory between initial and final conditions
        traj = fs.point_to_point(vehicle_flat, x0, u0, xf, uf, Tf, basis=poly)

        # Verify that the trajectory computation is correct
        x, u = traj.eval([0, Tf])
        np.testing.assert_array_almost_equal(x0, x[:, 0])
        np.testing.assert_array_almost_equal(u0, u[:, 0])
        np.testing.assert_array_almost_equal(xf, x[:, 1])
        np.testing.assert_array_almost_equal(uf, u[:, 1])

        # Simulate the system and make sure we stay close to desired traj
        T = np.linspace(0, Tf, 500)
        xd, ud = traj.eval(T)

        # For SciPy 1.0+, integrate equations and compare to desired
        if StrictVersion(sp.__version__) >= "1.0":
            t, y, x = ct.input_output_response(vehicle_flat,
                                               T,
                                               ud,
                                               x0,
                                               return_x=True)
            np.testing.assert_allclose(x, xd, atol=0.01, rtol=0.01)
Exemple #13
0
                             inputs=('v', 'delta'),
                             outputs=('x', 'y'),
                             states=('x', 'y', 'theta'))

# Define the endpoints of the trajectory
x0 = [0., -2., 0.]
u0 = [10., 0.]
xf = [40., 2., 0.]
uf = [10., 0.]
Tf = 4

# Define a set of basis functions to use for the trajectories
poly = fs.PolyFamily(6)

# Find a trajectory between the initial condition and the final condition
traj = fs.point_to_point(vehicle_flat, Tf, x0, u0, xf, uf, basis=poly)

# Create the desired trajectory between the initial and final condition
T = np.linspace(0, Tf, 500)
xd, ud = traj.eval(T)

# Simulation the open system dynamics with the full input
t, y, x = ct.input_output_response(vehicle_flat, T, ud, x0, return_x=True)

# Plot the open loop system dynamics
plt.figure(1)
plt.suptitle("Open loop trajectory for kinematic car lane change")
plot_results(t, x, ud)

#
# Approach #2: add cost function to make lane change quicker