Exemple #1
0
 def get_aligning_rotation(self, target):
     start_vec = vec3(self.dual_part.x, self.dual_part.y, self.dual_part.z)
     target_vec = vec3(target.dual_part.x, target.dual_part.y,
                       target.dual_part.z)
     try:
         comp_angle = start_vec.angle(target_vec)
     except ValueError:
         comp_angle = 0.0
         #print "ValueError caught"
     comp_axis = start_vec.cross(target_vec)
     return quat([comp_angle, comp_axis])
Exemple #2
0
 def store_endpoint_data(self,target_point):
     """ Storing the endpoint positions for
         displaying afterwards the velocity profile.
     """
     current_end_point = vec3(self.get_manipulator_coordinates()[0][3], \
                              self.get_manipulator_coordinates()[1][3], \
                              self.get_manipulator_coordinates()[2][3])
     self.data_end_point_velocity.append(abs(current_end_point - self.swing_target_point))
     self.data_target_distance.append(abs(current_end_point - target_point ))
     self.swing_target_point = current_end_point
Exemple #3
0
    def __init__(self, *args):
        """ Setting up the leg:
            No arguments are used.
            All necessary variables for the MMC computation are
            initialised as list of Dual Quaternions representing the leg:
                l_x - Segment translations
                d_x - Diagonal translation
                theta_x - joint rotation
                gamma_x - diagonal rotation
                delta_x - additional rotations for aligning orientations
                alpha, r - target rotation and translation
            For each variable exists a list which contains:
                [current value,
                 last value,
                 2 or 3 different values computed from different equations]
            After setup the leg is fully outstretched.

            The graphic output is initialised.
        """
        # Initialisation of segments as translations
        self.l_0 = [dualQuaternion(),0,0,0]
        self.l_1 = [dualQuaternion(),0,0,0]
        self.l_2 = [dualQuaternion(),0,0,0]
        if len(args)==0:
            self.l_0[0].set_translation([1,0,0])
            self.l_1[0].set_translation([1,0,0])
            self.l_2[0].set_translation([1,0,0])
        else :
            self.l_0[0].set_translation([args[0][0],0,0])
            self.l_1[0].set_translation([args[0][1],0,0])
            self.l_2[0].set_translation([args[0][2],0,0])
        # Initialisation of Diagonals and End effector Translations
        self.d_0 = [self.l_0[0] * self.l_1[0],0,0,0]
        self.d_1 = [self.l_1[0] * self.l_2[0],0,0,0]
        self.r = [self.d_0[0] * self.l_2[0],0,0,0]
        # Initialisation of Angles: all set to zero = fully stretched
        self.theta_0 = [dualQuaternion(),0,0,0]
        self.theta_1 = [dualQuaternion(),0,0,0]
        self.theta_2 = [dualQuaternion(),0,0,0]
        self.gamma_0 = [dualQuaternion(),0,0,0]
        self.gamma_1 = [dualQuaternion(),0,0,0]
        self.delta_0 = [dualQuaternion(),0,0,0]
        self.delta_1 = [dualQuaternion(),0,0,0]
        self.delta_2 = [dualQuaternion(),0,0,0]
        self.alpha = [dualQuaternion(),0,0,0]
        # Initialisation of Velocities and Accelerations
        self.theta_0_vel = [dualQuaternion(),0,0,0]
        self.theta_1_vel = [dualQuaternion(),0,0,0]
        self.theta_2_vel = [dualQuaternion(),0,0,0]
        self.theta_0_acc = [dualQuaternion(),0,0,0]
        self.theta_1_acc = [dualQuaternion(),0,0,0]
        self.theta_2_acc = [dualQuaternion(),0,0,0]

        # Damping values
        self.mmc_damping = 10
        self.mmc_vel_damping = 0
        self.mmc_acc_damping = 0

        # Writing down the distance to target and the velocity
        self.swing_target_point = vec3(self.get_manipulator_coordinates()[0][3], \
                  self.get_manipulator_coordinates()[1][3], \
                  self.get_manipulator_coordinates()[2][3])
        self.data_end_point_velocity = []
        self.data_target_distance = []
Exemple #4
0
 def project_onto_fixed_rotation_around_z(self, segm_dq):
     if (self.real_part.toAngleAxis()[0] > 0):
         rot_angle = math.atan2((self.real_part * segm_dq.dual_part * self.real_part.conjugate()).y, \
                      (self.real_part * segm_dq.dual_part * self.real_part.conjugate()).x )
         self.real_part = quat(rot_angle, vec3(0, 0, 1))