Exemple #1
0
class BaseController():
    """ The base controller class.

    """

    def __init__(self, robot, lossOfThrust = 0):
        """ Base controller __init__ method.

        Initialize drone parameters here.

        Args:
            robot (webots controller object): Controller for the drone.
            lossOfThrust (float): percent lost of thrust.

        """

        # Initialize variables
        self.robot = robot
        self.timestep = 0

        # intializa percent loss of thrust
        self.lossOfThrust = lossOfThrust

        # Define robot parameter
        self.m = 0.4
        self.d1x = 0.1122
        self.d1y = 0.1515
        self.d2x = 0.11709
        self.d2y = 0.128
        self.Ix = 0.000913855
        self.Iy = 0.00236242
        self.Iz = 0.00279965

        # define constants
        self.g = 9.81
        self.ct = 0.00026
        self.ctau = 5.2e-06
        self.U1_max = 10
        self.pi = 3.1415926535

        # define H matrix for conversion from control input U to motor speeds
        self.H_inv = self.ct*np.array([[1, 1, 1, 1],
                                    [self.d1y, -self.d1y, self.d2y, -self.d2y],
                                    [-self.d1x, -self.d1x, self.d2x, self.d2x],
                                    [-self.ctau/self.ct, self.ctau/self.ct, self.ctau/self.ct, -self.ctau/self.ct]
                                    ])
        self.H = np.linalg.inv(self.H_inv)

        # define variables for speed calculations
        self.xGPS_old = 0
        self.yGPS_old = 0
        self.zGPS_old = 0.099019

    def startSensors(self, timestep):
        """ Start sensors.

        Instantiate objects and start up GPS, Gyro, IMU sensors.

        For more details, refer to the Webots documentation.

        Args: 
            timestep (int): time step of the current world.

        """
        self.gps = GPS("gps")
        self.gps.enable(timestep)

        self.gyro = Gyro("gyro")
        self.gyro.enable(timestep)

        self.imu = InertialUnit("inertial unit")
        self.imu.enable(timestep)

        self.timestep = timestep

    def getStates(self):
        """ Get drone state.

        The state of drone is 16 dimensional:

        xGPS, yGPS, zGPS, 
        roll, pitch, yaw, 
        x_vel, y_vel, z_vel,
        roll_rate, pitch_rate, yaw_rate

        Returns: 
            np.array: x_t. information of 12 states.

        """

        # Timestep returned by Webots is in ms, so we convert
        delT = 1e-3*self.timestep

        # Extract (X, Y, Z) coordinate from GPS
        xGPS = self.gps.getValues()[0]
        yGPS = -self.gps.getValues()[2]
        zGPS = self.gps.getValues()[1]

        # Find the rate of change in each axis, and store the current value of (X, Y, Z)
        # as previous (X, Y, Z) which will be used in the next call
        x_vel = (xGPS - self.xGPS_old)/delT
        y_vel = (yGPS - self.yGPS_old)/delT
        z_vel = (zGPS - self.zGPS_old)/delT

        self.xGPS_old = xGPS
        self.yGPS_old = yGPS
        self.zGPS_old = zGPS

        # Extract (roll, pitch, yaw) angle from imu
        roll = self.imu.getRollPitchYaw()[0] 
        pitch = -self.imu.getRollPitchYaw()[1]
        yaw = self.imu.getRollPitchYaw()[2]

        # Extract (roll rate, pitch rate, yaw rate) angular velocity from imu
        roll_rate = self.gyro.getValues()[0]
        pitch_rate = -self.gyro.getValues()[2] 
        yaw_rate = self.gyro.getValues()[1]

        x_t = np.array([xGPS, yGPS, zGPS, roll, pitch, yaw, x_vel, y_vel, z_vel, roll_rate, pitch_rate, yaw_rate]).reshape(-1,1)

        return x_t

    def getMotorAll(self):
        """ Get each motors' controller.

        Returns:
            list: Each motor's controller.

        """
        frontLeftMotor = self.robot.getMotor('front left propeller')
        frontRightMotor = self.robot.getMotor('front right propeller')
        backLeftMotor = self.robot.getMotor('rear left propeller')
        backRightMotor = self.robot.getMotor('rear right propeller')
        return [frontLeftMotor, frontRightMotor, backLeftMotor, backRightMotor]

    def initializeMotors(self):
        """ Initialisze all motors speed to 0.

        """
        [frontLeftMotor, frontRightMotor, backLeftMotor, backRightMotor] = self.getMotorAll()
        frontLeftMotor.setPosition(float('inf'))
        frontRightMotor.setPosition(float('inf'))
        backLeftMotor.setPosition(float('inf'))
        backRightMotor.setPosition(float('inf'))
        self.motorsSpeed(0, 0, 0, 0)

    def motorsSpeed(self, v1, v2, v3, v4):
        """ Set each motors' speed.

        Args:
            v1, v2, v3, v4 (int): desired speed for each motor.

        """
        [frontLeftMotor, frontRightMotor, backLeftMotor, backRightMotor] = self.getMotorAll()
        frontLeftMotor.setVelocity(v1)
        frontRightMotor.setVelocity(v2)
        backLeftMotor.setVelocity(v3)
        backRightMotor.setVelocity(v4)

    def convertUtoMotorSpeed(self, U):
        """ Convert control input to motor speed.

        Args:
            U (np.array): desired control input.

        Returns:
            np.array: rotorspeed. Desired rotor speed.

        """
        w_squre = np.clip(np.matmul(self.H, U), 0, 576**2)
        rotorspeed = np.sqrt(w_squre.flatten())
        return rotorspeed

    def setMotorsSpeed(self, motorspeed, motor_failure=0):
        """ Set motor speed.

        Args:
            motorspeed (np.array): desired motor speed.
            motor_failure (bool): True for motor failure, False otherwise.

        """
        if motor_failure :
            # print("--- Motor Failure ---")
            factor = np.sqrt(1 - self.lossOfThrust)
            self.motorsSpeed(float(motorspeed[0]) * factor, float(-motorspeed[1]), float(-motorspeed[2]), float(motorspeed[3]))
        else:
            self.motorsSpeed(float(motorspeed[0]), float(-motorspeed[1]), float(-motorspeed[2]), float(motorspeed[3]))
Exemple #2
0
sağMotorİleri.setVelocity(1.0)
sağMotorGeri.setVelocity(1.0)



while robot.step(timestep) != -1:
    if(robot.getTime()>1.0):
        break



# Main loop:
# - perform simulation steps until Webots is stopping the controller
while robot.step(timestep) != 1:
    
    roll=imu.getRollPitchYaw()[0]+M_PI/2.0
    pitch=imu.getRollPitchYaw()[1]
    rakim=gps.getValues()[1]
    roll_hiz=gyro.getValues()[0]
    pitch_hiz=gyro.getValues()[1]
    
    print("x ekseni : {0} - y ekseni : {1} ".format(roll,pitch))
    
    camera_roll_motor.setPosition(0.1*roll_hiz)
    camera_pitch_motor.setPosition(0.1*pitch_hiz)
    
    roll_dagitim=0.0
    pitch_dagitim=0.0
    yaw_dagitim=0.0
    target_rakim=1.0
    
Exemple #3
0
keyboard = Keyboard()
keyboard.enable(60)

while robot.step(timestep) != -1:

    #motor_lst[0].setPosition(10.0)
    #motor_lst[0].setVelocity(1.0)

        
    key=keyboard.getKey()
    if (key==ord('D')):
        print('D is pressed')
        rotate(math.pi * -2 / 8)
    elif (key==ord('F')):
        print('F is pressed')
        rotate(math.pi * 2 / 8)
    elif (key==ord(' ')):
        print('Space is pressed')
        default_high_pos()
    elif (key==ord('V')):
        print('V is pressed')
        default_low_pos()
        
    print("gyro", gyro.getValues())
    print("inertial_unit", inertial_unit.getRollPitchYaw())
        
    #rotate()
    #move_forward()

# Enter here exit cleanup code.
Exemple #4
0
    else:
        velocity_x = (gps_x - last_x) / timestep
    if last_y is None:
        velocity_y = 0
    else:
        velocity_y = (gps_y - last_y) / timestep
    last_x = gps_x
    last_y = gps_y
    vertical_velocity = (altitude - last_altitude) / timestep
    last_altitude = altitude

    # Gyro (acceleration)
    roll_acceleration, pitch_acceleration, yaw_acceleration = myGyro.getValues(
    )
    # Rotation (radians)
    roll, pitch, yaw = inertial_unit.getRollPitchYaw()
    roll += math.pi / 2

    # Adjust motor speeds according to differences in actual and starting Roll/Pitch/Yaw
    # Scale and offset constants for tuning
    roll_scale = 50
    pitch_scale = 30
    vertical_scale = 3
    vertical_offset = .6
    vertical_velocity_scale = 5000
    xy_velocity_scale = 5000

    # Calculate inverse kinematics with a clamp() to have a Min and Max
    pitch_towards = -math.cos(yaw) * (
        err_x + xy_velocity_scale * velocity_x) + math.sin(yaw) * (
            err_y + xy_velocity_scale * velocity_y)