def __init__(self, n_channles, n_filters, activation, num_sigmas, block_depth=2): super().__init__() self.activation = activation self.channels_to_filters = nn.Conv2d(n_channles, n_filters, kernel_size=3, padding=1) self.output_1_layer = ConvBlock(n_filters, n_filters, conv_before=False, activation=activation, num_sigmas=num_sigmas, kernel_size=3, residual=True, padding=1, block_depth=block_depth) self.output_2_layer = ConvBlock(n_filters, 2 * n_filters, conv_before=False, activation=activation, num_sigmas=num_sigmas, kernel_size=3, residual=True, block_depth=block_depth, pooling=True) self.output_3_layer = ConvBlock(2 * n_filters, 2 * n_filters, conv_before=False, activation=activation, num_sigmas=num_sigmas, kernel_size=3, dilation=2, padding=2, residual=True, block_depth=block_depth) self.output_4_layer = ConvBlock(2 * n_filters, 2 * n_filters, conv_before=False, activation=activation, num_sigmas=num_sigmas, kernel_size=3, dilation=4, padding=4, residual=True, block_depth=block_depth) self.refine_block4 = RefineBlock(2 * n_filters, 2 * n_filters, activation, num_sigmas, num_inputs=1) self.refine_block3 = RefineBlock(2 * n_filters, 2 * n_filters, activation, num_sigmas, num_inputs=2) self.refine_block2 = RefineBlock(2 * n_filters, 2 * n_filters, activation, num_sigmas, num_inputs=2) self.refine_block1 = RefineBlock(2 * n_filters, 2 * n_filters, activation, num_sigmas, num_inputs=2, in_channels_high=n_filters) self.output_layer = SequentialWithSigmas( ConditionalInstanceNormalizationPlusPlus(2 * n_filters, num_sigmas), activation(), nn.Conv2d(2 * n_filters, n_channles, kernel_size=3, padding=1) )
def __init__(self): self.conv_layer1 = ConvLayer(7, 3, 64, stride=2, padding='SAME') self.batch_norm1 = BatchNormLayer(64) self.relu_layer1 = ReluLayer() self.max_pool1 = MaxPoolLayer(3) self.conv_block1 = ConvBlock(64, mo=[64, 64, 256], stride=1) self.layers = [ self.conv_layer1, self.batch_norm1, self.relu_layer1, self.max_pool1, self.conv_block1 ]
def __init__(self): #layers for the partial resnet self.layers = [ ConvLayer(d = 7,mi=3,mo=64,stride = 2,padding='SAME'), BatchNormLayer(64), ReluLayer(), MaxPoolLayer(3), ConvBlock(mi = 64,fm_sizes = [64,64,256],stride = 1) ] self.input_1 = tf.placeholder(dtype = tf.float32,shape = [None,224,224,3]) self.output1 = self.forward(self.input_1)
def add_block_layer(self, n_layers, stride, out_channels): # stride_for_each_layer_list = [stride] concatonated with [1, 1, .....] stride_for_each_layer_list = [stride] + [1] * (n_layers - 1) layers = [] for stride in stride_for_each_layer_list: layers.append( ConvBlock(self.in_channels, out_channels, kernel_size=3, stride=stride, padding=1)) self.in_channels = out_channels return nn.Sequential(*layers)
def __init__(self): #1st block self.conv1 = ConvLayer(7, 3, 64, stride=2, padding='SAME') self.bn1 = BatchNormLayer(64) self.activation1 = ReluLayer() self.max_pool1 = MaxPoolLayer(3, stride=2) #2nd Block self.conv_block2a = ConvBlock(64, [64, 64, 256], stride=1) self.identity_block2b = IdentityBlock(256, [64, 64, 256]) self.identity_block2c = IdentityBlock(256, [64, 64, 256]) #3rd Block self.conv_block3a = ConvBlock(256, [128, 128, 512], stride=2) self.identity_block3b = IdentityBlock(512, [128, 128, 512]) self.identity_block3c = IdentityBlock(512, [128, 128, 512]) self.identity_block3d = IdentityBlock(512, [128, 128, 512]) #4th Block self.conv_block4a = ConvBlock(512, [256, 256, 1024], stride=2) self.identity_block4b = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4c = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4d = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4e = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4f = IdentityBlock(1024, [256, 256, 1024]) #5th Block self.conv_block5a = ConvBlock(1024, [512, 512, 2048], stride=2) self.identity_block5b = IdentityBlock(2048, [512, 512, 2048]) self.identity_block5c = IdentityBlock(2048, [512, 512, 2048]) #Final block self.avg_poolf = AvgPoolLayer(7, stride=7) self.flattenf = FlattenLayer() self.dense_layerf = DenseLayer(2048, 1000)
class PartialResNet(object): def __init__(self): self.conv_layer1 = ConvLayer(7, 3, 64, stride=2, padding='SAME') self.batch_norm1 = BatchNormLayer(64) self.relu_layer1 = ReluLayer() self.max_pool1 = MaxPoolLayer(3) self.conv_block1 = ConvBlock(64, mo=[64, 64, 256], stride=1) self.layers = [ self.conv_layer1, self.batch_norm1, self.relu_layer1, self.max_pool1, self.conv_block1 ] def forward(self, X): FX = self.conv_layer1.forward(X) FX = self.batch_norm1.forward(FX) FX = self.relu_layer1.forward(FX) FX = self.max_pool1.forward(FX) FX = self.conv_block1.forward(FX) return FX def get_params(self): all_params = [] all_params += self.conv_layer1.get_params() all_params += self.batch_norm1.get_params() all_params += self.conv_block1.get_params() return all_params def set_session(self, session): self.session = session self.conv_layer1.session = session self.batch_norm1.session = session self.conv_block1.set_session(session) def copyFromKerasLayers(self, layers): self.conv_layer1.copyFromKerasLayers(layers[1]) self.batch_norm1.copyFromKerasLayers(layers[2]) self.conv_block1.copyFromKerasLayers(layers[5:])
class TfResNet(object): def __init__(self): #1st block self.conv1 = ConvLayer(7, 3, 64, stride=2, padding='SAME') self.bn1 = BatchNormLayer(64) self.activation1 = ReluLayer() self.max_pool1 = MaxPoolLayer(3, stride=2) #2nd Block self.conv_block2a = ConvBlock(64, [64, 64, 256], stride=1) self.identity_block2b = IdentityBlock(256, [64, 64, 256]) self.identity_block2c = IdentityBlock(256, [64, 64, 256]) #3rd Block self.conv_block3a = ConvBlock(256, [128, 128, 512], stride=2) self.identity_block3b = IdentityBlock(512, [128, 128, 512]) self.identity_block3c = IdentityBlock(512, [128, 128, 512]) self.identity_block3d = IdentityBlock(512, [128, 128, 512]) #4th Block self.conv_block4a = ConvBlock(512, [256, 256, 1024], stride=2) self.identity_block4b = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4c = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4d = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4e = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4f = IdentityBlock(1024, [256, 256, 1024]) #5th Block self.conv_block5a = ConvBlock(1024, [512, 512, 2048], stride=2) self.identity_block5b = IdentityBlock(2048, [512, 512, 2048]) self.identity_block5c = IdentityBlock(2048, [512, 512, 2048]) #Final block self.avg_poolf = AvgPoolLayer(7, stride=7) self.flattenf = FlattenLayer() self.dense_layerf = DenseLayer(2048, 1000) def forward(self, X): FX = self.conv1.forward(X) FX = self.bn1.forward(FX) FX = self.activation1.forward(FX) FX = self.max_pool1.forward(FX) FX = self.conv_block2a.forward(FX) FX = self.identity_block2b.forward(FX) FX = self.identity_block2c.forward(FX) FX = self.conv_block3a.forward(FX) FX = self.identity_block3b.forward(FX) FX = self.identity_block3c.forward(FX) FX = self.identity_block3d.forward(FX) FX = self.conv_block4a.forward(FX) FX = self.identity_block4b.forward(FX) FX = self.identity_block4c.forward(FX) FX = self.identity_block4d.forward(FX) FX = self.identity_block4e.forward(FX) FX = self.identity_block4f.forward(FX) FX = self.conv_block5a.forward(FX) FX = self.identity_block5b.forward(FX) FX = self.identity_block5c.forward(FX) FX = self.avg_poolf.forward(FX) FX = self.flattenf.forward(FX) FX = self.dense_layerf.forward(FX) return FX def get_params(self): params = [] params += self.conv1.get_params() params += self.bn1.get_params() params += self.conv_block2a.get_params() params += self.identity_block2b.get_params() params += self.identity_block2c.get_params() params += self.conv_block3a.get_params() params += self.identity_block3b.get_params() params += self.identity_block3c.get_params() params += self.identity_block3d.get_params() params += self.conv_block4a.get_params() params += self.identity_block4b.get_params() params += self.identity_block4c.get_params() params += self.identity_block4d.get_params() params += self.identity_block4e.get_params() params += self.identity_block4f.get_params() params += self.conv_block5a.get_params() params += self.identity_block5b.get_params() params += self.identity_block5c.get_params() params += self.dense_layerf.get_params() return params def set_session(self, session): self.conv1.session = session self.bn1.session = session self.conv_block2a.set_session(session) self.identity_block2b.set_session(session) self.identity_block2c.set_session(session) self.conv_block3a.set_session(session) self.identity_block3b.set_session(session) self.identity_block3c.set_session(session) self.identity_block3d.set_session(session) self.conv_block4a.set_session(session) self.identity_block4b.set_session(session) self.identity_block4c.set_session(session) self.identity_block4d.set_session(session) self.identity_block4e.set_session(session) self.identity_block4f.set_session(session) self.conv_block5a.set_session(session) self.identity_block5b.set_session(session) self.identity_block5c.set_session(session) self.dense_layerf.session = session def copyFromKerasLayers(self, layers): self.conv1.copyFromKerasLayers(layers[1]) self.bn1.copyFromKerasLayers(layers[2]) self.conv_block2a.copyFromKerasLayers(layers[5:17]) self.identity_block2b.copyFromKerasLayers(layers[17:27]) self.identity_block2c.copyFromKerasLayers(layers[27:37]) self.conv_block3a.copyFromKerasLayers(layers[37:49]) self.identity_block3b.copyFromKerasLayers(layers[49:59]) self.identity_block3c.copyFromKerasLayers(layers[59:69]) self.identity_block3d.copyFromKerasLayers(layers[69:79]) self.conv_block4a.copyFromKerasLayers(layers[79:91]) self.identity_block4b.copyFromKerasLayers(layers[91:101]) self.identity_block4c.copyFromKerasLayers(layers[101:111]) self.identity_block4d.copyFromKerasLayers(layers[111:121]) self.identity_block4e.copyFromKerasLayers(layers[121:131]) self.identity_block4f.copyFromKerasLayers(layers[131:141]) self.conv_block5a.copyFromKerasLayers(layers[141:153]) self.identity_block5b.copyFromKerasLayers(layers[153:163]) self.identity_block5c.copyFromKerasLayers(layers[163:173]) self.dense_layerf.copyFromKerasLayers(layers[175])