Exemple #1
0
        conv_layer.params[0].set_value(savedparams[k])
        conv_layer.params[1].set_value(savedparams[k + 1])
        k = k + 2

    test_set_x = datasets[0][:, :img_h]
    test_set_y = np.asarray(datasets[0][:, -1], "int32")

    test_pred_layers = []
    test_size = 1
    test_layer0_input = Words[T.cast(x.flatten(), dtype="int32")].reshape(
        (test_size, 1, img_h, Words.shape[1]))
    for conv_layer in conv_layers:
        test_layer0_output = conv_layer.predict(test_layer0_input, test_size)
        test_pred_layers.append(test_layer0_output.flatten(2))
    test_layer1_input = T.concatenate(test_pred_layers, 1)
    test_y_pred = classifier.predict_p(test_layer1_input)
    #test_error = T.mean(T.neq(test_y_pred, y))
    pdb.set_trace()
    model = theano.function([x], test_y_pred, allow_input_downcast=True)
    currentClass = 0
    currentBestScore = 0
    currentBestSentence = ""
    for i in range(0, test_set_x.shape[0]):
        rev = revsin[i]
        result = model(test_set_x[i, None])
        scoresum = sum(result[0][0:currentClass + 1])
        if rev['y'] > currentClass:
            currentClass = rev['y']
            currentBestScore = 0
            print "best for class" + str(currentClass)
            print currentBestSentence
        conv_layer.params[1].set_value( savedparams[k+1])
        k = k + 2

    test_set_x = datasets[0][:,:img_h] 
    test_set_y = np.asarray(datasets[0][:,-1],"int32")



    test_pred_layers = []
    test_size = 1
    test_layer0_input = Words[T.cast(x.flatten(),dtype="int32")].reshape((test_size,1,img_h,Words.shape[1]))
    for conv_layer in conv_layers:
        test_layer0_output = conv_layer.predict(test_layer0_input, test_size)
        test_pred_layers.append(test_layer0_output.flatten(2))
    test_layer1_input = T.concatenate(test_pred_layers, 1)
    test_y_pred = classifier.predict_p(test_layer1_input)
    #test_error = T.mean(T.neq(test_y_pred, y))
    pdb.set_trace()
    model = theano.function([x],test_y_pred,allow_input_downcast=True)
    currentClass = 0
    currentBestScore = 0
    currentBestSentence = ""
    correct = 0
    docMean = 0
    docSent = 0
    with open('output.csv', 'w') as fp:
        writer = csv.writer(fp, delimiter=',')
        writer.writerow(['class','score', 'sdscore','sentence'])
        print "document " + str(currentClass)
        for i in range(0,test_set_x.shape[0]):
            rev = revsin[i]
Exemple #3
0
  def __init__(self):
    mrppath = os.path.join(this_dir, "mr.p")
    x = cPickle.load(open(mrppath,"rb"))
    revs, W, W2, word_idx_map, vocab = x[0], x[1], x[2], x[3], x[4]
    self.word_idx_map = word_idx_map
            
    U = W
    classifierpath = os.path.join(this_dir, "classifier.save")
    savedparams = cPickle.load(open(classifierpath,'rb'))

    filter_hs=[3,4,5]
    conv_non_linear="relu"
    hidden_units=[100,2]
    dropout_rate=[0.5]
    activations=[Iden]
    img_h = 56 + 4 + 4
    img_w = 300
    rng = np.random.RandomState(3435)
    batch_size=50
    filter_w = img_w    
    feature_maps = hidden_units[0]
    filter_shapes = []
    pool_sizes = []
    for filter_h in filter_hs:
        filter_shapes.append((feature_maps, 1, filter_h, filter_w))
        pool_sizes.append((img_h-filter_h+1, img_w-filter_w+1))

#define model architecture
    x = T.matrix('x')   
    Words = theano.shared(value = U, name = "Words")
    zero_vec_tensor = T.vector()
    layer0_input = Words[T.cast(x.flatten(),dtype="int32")].reshape((x.shape[0],1,x.shape[1],Words.shape[1]))                                  
    conv_layers = []
    layer1_inputs = []
    for i in xrange(len(filter_hs)):
        filter_shape = filter_shapes[i]
        pool_size = pool_sizes[i]
        conv_layer = LeNetConvPoolLayer(rng, input=layer0_input,image_shape=(batch_size, 1, img_h, img_w),
                                filter_shape=filter_shape, poolsize=pool_size, non_linear=conv_non_linear)
        layer1_input = conv_layer.output.flatten(2)
        conv_layers.append(conv_layer)
        layer1_inputs.append(layer1_input)
    layer1_input = T.concatenate(layer1_inputs,1)
    hidden_units[0] = feature_maps*len(filter_hs)    
    classifier = MLPDropout(rng, input=layer1_input, layer_sizes=hidden_units, activations=activations, dropout_rates=dropout_rate)
    classifier.params[0].set_value(savedparams[0])
    classifier.params[1].set_value(savedparams[1])
    k = 2
    for conv_layer in conv_layers:
        conv_layer.params[0].set_value( savedparams[k])
        conv_layer.params[1].set_value( savedparams[k+1])
        k = k + 2

    test_pred_layers = []
    test_size = 1
    test_layer0_input = Words[T.cast(x.flatten(),dtype="int32")].reshape((test_size,1,img_h,Words.shape[1]))
    for conv_layer in conv_layers:
        test_layer0_output = conv_layer.predict(test_layer0_input, test_size)
        test_pred_layers.append(test_layer0_output.flatten(2))
    test_layer1_input = T.concatenate(test_pred_layers, 1)
    test_y_pred = classifier.predict_p(test_layer1_input)
    #test_error = T.mean(T.neq(test_y_pred, y))
    self.model = theano.function([x],test_y_pred,allow_input_downcast=True)