Exemple #1
0
def separate(args):
    if args.mix_dir is None and args.mix_json is None:
        print("Must provide mix_dir or mix_json! When providing mix_dir, "
              "mix_json is ignored.")

    # Load model
    model = ConvTasNet(256,
                       20,
                       256,
                       512,
                       3,
                       8,
                       4,
                       2,
                       norm_type="gLN",
                       causal=0,
                       mask_nonlinear="relu")
    model.cuda()
    model.load_state_dict(torch.load(args.model_path)['sep_state_dict'])
    print(model)
    model.eval()

    # Load data
    eval_dataset = EvalDataset(args.mix_dir,
                               args.mix_json,
                               batch_size=args.batch_size,
                               sample_rate=args.sample_rate)
    eval_loader = EvalDataLoader(eval_dataset, batch_size=1)
    os.makedirs(args.out_dir, exist_ok=True)

    def write(inputs, filename, sr=args.sample_rate):
        #librosa.output.write_wav(filename, inputs, sr)# norm=True)
        #librosa.output.write_wav(filename, inputs, sr, norm=True)
        #print(inputs)
        inputs = inputs / max(np.abs(inputs))
        #print(inputs)

        sf.write(filename, inputs, sr)
        #sf.write(filename, inputs, sr, 'PCM_16')

    with torch.no_grad():
        for (i, data) in enumerate(eval_loader):
            # Get batch data
            mixture, mix_lengths, filenames = data
            if args.use_cuda:
                mixture, mix_lengths = mixture.cuda(), mix_lengths.cuda()
            # Forward
            estimate_source = model(mixture)  # [B, C, T]
            # Remove padding and flat
            flat_estimate = remove_pad(estimate_source, mix_lengths)
            mixture = remove_pad(mixture, mix_lengths)
            # Write result
            for i, filename in enumerate(filenames):
                filename = os.path.join(
                    args.out_dir,
                    os.path.basename(filename).strip('.wav'))
                write(mixture[i], filename + '.wav')
                C = flat_estimate[i].shape[0]
                for c in range(C):
                    write(flat_estimate[i][c],
                          filename + '_s{}.wav'.format(c + 1))
        'causal': args.causal,
        'mask_nonlinear': args.mask_nonlinear
    }

    train_args = {
        'lr': args.lr,
        'batch_size': args.batch_size,
        'epochs': args.epochs
    }

    model = ConvTasNet(**model_args)

    if args.evaluate == 0 and args.separate == 0:
        dataset = AudioDataset(args.data_dir, sr=args.sr, mode='train', seq_len=args.seq_len, verbose=0, voice_only=args.voice_only)

        print('DataLoading Done')

        train(model, dataset, **train_args)
    elif args.evaluate == 1:
        model.load_state_dict(torch.load(args.model, map_location='cpu'))

        dataset = AudioDataset(args.data_dir, sr=args.sr, mode='test', seq_len=args.seq_len, verbose=0, voice_only=args.voice_only)

        evaluate(model, dataset, args.batch_size, 0, args.cal_sdr)
    else:
        model.load_state_dict(torch.load(args.model, map_location='cpu'))

        dataset = AudioDataset(args.data_dir, sr=args.sr, mode='test', seq_len=args.seq_len, verbose=0, voice_only=args.voice_only)

        separate(model, dataset, args.output_dir, sr=8000)