Exemple #1
0
def pca_agg_task_cv(exp, block,
                     train_es, test_es, gene_sets,
                     base_filename,
    ):
    """
        @type train_es, test_es: ExpressionSet
        @type gene_sets: GeneSets

    """
    df_train = train_es.get_assay_data_frame()
    df_test = test_es.get_assay_data_frame()
    src_gs = gene_sets.get_gs()
    if settings.CELERY_DEBUG:
        import sys
        sys.path.append('/Migration/skola/phd/projects/miXGENE/mixgene_project/wrappers/pycharm-debug.egg')
        import pydevd
        pydevd.settrace('localhost', port=6901, stdoutToServer=True, stderrToServer=True)
    df_train, src_gs_train = preprocess_df_gs(df_train, src_gs)
    df_test, src_gs_test = preprocess_df_gs(df_test, src_gs)

    result_df_train, result_df_test = pca_agg_cv(df_train, df_test, src_gs_train.genes)

    result_train = train_es.clone(base_filename + "_train")
    result_train.store_assay_data_frame(result_df_train)
    result_train.store_pheno_data_frame(train_es.get_pheno_data_frame())

    result_test = test_es.clone(base_filename + "_test")
    result_test.store_assay_data_frame(result_df_test)
    result_test.store_pheno_data_frame(test_es.get_pheno_data_frame())

    return [result_train, result_test], {}
Exemple #2
0
    def gt_basic(es, gene_sets, pheno_class_column,
                 model="logistic",
                 permutations=100):
        """
            @param es: Expression set with defined user class in pheno
            @type es: ExpressionSet

            @type gene_sets: environment.structures.GeneSets

            @param pheno_class_column: Column name of target classes in phenotype table
            @type pheno_class_column: string or None
        """
        if settings.CELERY_DEBUG:
            import sys
            sys.path.append('/Migration/skola/phd/projects/miXGENE/mixgene_project/wrappers/pycharm-debug.egg')
            import pydevd
            pydevd.settrace('localhost', port=6901, stdoutToServer=True, stderrToServer=True)
        src_gs = gene_sets.get_gs()
        # GlobalTest.gt_init()
        df = es.get_assay_data_frame()

        df, gs_filtered = preprocess_df_gs(df, src_gs)

        dataset = com.convert_to_r_matrix(df.T)
        response = es.get_pheno_column_as_r_obj(pheno_class_column)

        ds_r = R.r['t'](dataset)
        gs_r = gs_filtered.to_r_obj()
        try:
            R.r['library']("globaltest")
            gt = R.r['gt']
            gt_instance = gt(
                response,
                ds_r,
                subsets=gs_r,
              #  model=model,
              #  permutations=permutations
            )
        except:
            import sys
            log.error("Unexpected error: %s" % sys.exc_info()[0])
            raise
        result = gt_instance.do_slot('result')
        result_df = com.convert_robj(result)
        return result_df
Exemple #3
0
def pca_agg_task(exp, block,
                     es, gene_sets,
                     base_filename,
    ):
    """
        @type es: ExpressionSet
        @type gene_sets: GeneSets

    """
    df = es.get_assay_data_frame()
    src_gs = gene_sets.get_gs()
    if settings.CELERY_DEBUG:
        import sys
        sys.path.append('/Migration/skola/phd/projects/miXGENE/mixgene_project/wrappers/pycharm-debug.egg')
        import pydevd
        pydevd.settrace('localhost', port=6901, stdoutToServer=True, stderrToServer=True)
    df, src_gs = preprocess_df_gs(df, src_gs)

    result_df = pca_agg(df, src_gs.genes)
    result = es.clone(base_filename)
    result.store_assay_data_frame(result_df)
    result.store_pheno_data_frame(es.get_pheno_data_frame())
    return [result], {}