def learn_model_from_data(dataset_directory, working_directory): dataset = AccelerationDataset(dataset_directory) mlpmodel = MLPMeasurementModel(working_directory) mlpmodel.train(dataset) dataset.save_labels(os.path.join(working_directory, "labels.txt")) neon2iosmlp.convert(mlpmodel.model_path, os.path.join(working_directory, "weights.raw")) return mlpmodel.model_path
def learn_model_from_data(dataset, working_directory, model_name): """Use MLP to train the dataset and generate result in working_directory""" model_trainer = MLPMeasurementModelTrainer(working_directory) trained_model = model_trainer.train(dataset) dataset.save_labels(os.path.join(working_directory, model_name + '_model.labels.txt')) neon2iosmlp.convert(model_trainer.model_path, os.path.join(working_directory, model_name + '_model.weights.raw')) layers = model_trainer.layers(dataset, trained_model) neon2iosmlp.write_layers_to_file(layers, os.path.join(working_directory, model_name + '_model.layers.txt')) return model_trainer, trained_model
def learn_model_from_data(dataset, working_directory, model_name): """Use MLP to train the dataset and generate result in working_directory""" model_trainer = MLPMeasurementModelTrainer(working_directory) trained_model = model_trainer.train(dataset) dataset.save_labels( os.path.join(working_directory, model_name + '_model.labels.txt')) neon2iosmlp.convert( model_trainer.model_path, os.path.join(working_directory, model_name + '_model.weights.raw')) layers = model_trainer.layers(dataset, trained_model) neon2iosmlp.write_layers_to_file( layers, os.path.join(working_directory, model_name + '_model.layers.txt')) return model_trainer, trained_model