def reset(self): # _reward = np.nan env_info_dict = self.u_env.reset(train_mode=(util.get_lab_mode() != 'dev'), config=self.env_spec.get('multiwoz')) a, b = 0, 0 # default singleton aeb env_info_a = self._get_env_info(env_info_dict, a) state = env_info_a.states[b] self.done = False logger.debug(f'Env {self.e} reset state: {state}') return state
def analyze_trial(trial_spec, session_metrics_list): '''Analyze trial and save data, then return metrics''' info_prepath = trial_spec['meta']['info_prepath'] # calculate metrics trial_metrics = calc_trial_metrics(session_metrics_list, info_prepath) # plot graphs viz.plot_trial(trial_spec, trial_metrics) # zip files if util.get_lab_mode() == 'train': predir, _, _, _, _, _ = util.prepath_split(info_prepath) shutil.make_archive(predir, 'zip', predir) logger.info(f'All trial data zipped to {predir}.zip') return trial_metrics
def to_check_train_step(): '''Condition for running assert_trained''' return os.environ.get('PY_ENV') == 'test' or util.get_lab_mode() == 'dev'