Exemple #1
0
 def GanReward_Update(self, training_times=1):
     for _ in range(training_times):
         batch = self.experience_buffer[-1]
         minibatches = util.split_minibatch(batch, 64)
         for fake_batch in minibatches:
             loss = self.reward_agent.update(fake_batch)
             self.optim_gandisc.zero_grad()
             loss.backward()
             torch.nn.utils.clip_grad_value_(self.reward_agent.discriminator.parameters(), 0.5)
             self.optim_gandisc.step()
Exemple #2
0
 def disc_train(self, training_times=1):
     for t in range(training_times):
         # idx = min(t+1, len(self.experience_buffer))
         batch = self.experience_buffer[-1]
         minibatches = util.split_minibatch(batch, 64)
         for fake_batch in minibatches:
             self.optim_disc.zero_grad()
             loss = self.discriminator.disc_train(fake_batch)
             loss.backward()
             torch.nn.utils.clip_grad_norm_(self.discriminator.parameters(), 3)
             self.optim_disc.step()
Exemple #3
0
 def airl_train(self, training_times=1):
     # print("airl training")
     for t in range(training_times):
         total_loss = 0
         # idx = min(t+1, len(self.experience_buffer))
         batch = self.experience_buffer[-1]
         minibatches = util.split_minibatch(batch, 64)
         # print("minibatch number: {}".format(len(minibatches)))
         for fake_batch in minibatches:
             self.optim_disc.zero_grad()
             loss = self.discriminator.disc_train(fake_batch)
             total_loss += loss.item()
             loss.backward()
             self.optim_disc.step()
             for p in self.discriminator.parameters():
                 p.data.clamp_(-0.1, 0.1)
         logger.info("airl training loss: {}".format(total_loss/len(minibatches)))
Exemple #4
0
 def train(self):
     if util.in_eval_lab_modes():
         return np.nan
     clock = self.body.env.clock
     if self.to_train == 1:
         net_util.copy(self.net, self.old_net)  # update old net
         batch = self.sample()
         clock.set_batch_size(len(batch))
         _pdparams, v_preds = self.calc_pdparam_v(batch)
         advs, v_targets = self.calc_advs_v_targets(batch, v_preds)
         # piggy back on batch, but remember to not pack or unpack
         batch['advs'], batch['v_targets'] = advs, v_targets
         if self.body.env.is_venv:  # unpack if venv for minibatch sampling
             for k, v in batch.items():
                 if k not in ('advs', 'v_targets'):
                     batch[k] = math_util.venv_unpack(v)
         total_loss = torch.tensor(0.0)
         for _ in range(self.training_epoch):
             minibatches = util.split_minibatch(batch, self.minibatch_size)
             for minibatch in minibatches:
                 if self.body.env.is_venv:  # re-pack to restore proper shape
                     for k, v in minibatch.items():
                         if k not in ('advs', 'v_targets'):
                             minibatch[k] = math_util.venv_pack(
                                 v, self.body.env.num_envs)
                 advs, v_targets = minibatch['advs'], minibatch['v_targets']
                 pdparams, v_preds = self.calc_pdparam_v(minibatch)
                 policy_loss = self.calc_policy_loss(
                     minibatch, pdparams, advs)  # from actor
                 val_loss = self.calc_val_loss(v_preds,
                                               v_targets)  # from critic
                 if self.shared:  # shared network
                     loss = policy_loss + val_loss
                     self.net.train_step(loss,
                                         self.optim,
                                         self.lr_scheduler,
                                         clock=clock,
                                         global_net=self.global_net)
                 else:
                     self.net.train_step(policy_loss,
                                         self.optim,
                                         self.lr_scheduler,
                                         clock=clock,
                                         global_net=self.global_net)
                     self.critic_net.train_step(
                         val_loss,
                         self.critic_optim,
                         self.critic_lr_scheduler,
                         clock=clock,
                         global_net=self.global_critic_net)
                     loss = policy_loss + val_loss
                 total_loss += loss
         loss = total_loss / self.training_epoch / len(minibatches)
         # reset
         self.to_train = 0
         logger.debug(
             f'Trained {self.name} at epi: {clock.epi}, frame: {clock.frame}, t: {clock.t}, total_reward so far: {self.body.total_reward}, loss: {loss:g}'
         )
         return loss.item()
     else:
         return np.nan
Exemple #5
0
    def train(self):
        # torch.save(self.net.state_dict(), './reward_model/policy_pretrain.mdl')
        # raise ValueError("policy pretrain stops")
        if util.in_eval_lab_modes():
            return np.nan
        clock = self.body.env.clock
        if self.body.env.clock.epi > 700:
            self.pretrain_finished = True
            # torch.save(self.discriminator.state_dict(), './reward_model/airl_pretrain.mdl')
            # raise ValueError("pretrain stops here")
        if self.to_train == 1:
            net_util.copy(self.net, self.old_net)  # update old net
            batch = self.sample()
            if self.reward_type == 'OFFGAN':
                batch = self.replace_reward_batch(batch)
            # if self.reward_type =='DISC':
            # batch = self.fetch_disc_reward(batch)
            # if self.reward_type =='AIRL':
            # batch = self.fetch_airl_reward(batch)
            # if self.reward_type == 'OFFGAN_update':
            # batch = self.fetch_offgan_reward(batch)

            clock.set_batch_size(len(batch))
            _pdparams, v_preds = self.calc_pdparam_v(batch)
            advs, v_targets = self.calc_advs_v_targets(batch, v_preds)
            # piggy back on batch, but remember to not pack or unpack
            batch['advs'], batch['v_targets'] = advs, v_targets
            if self.body.env.is_venv:  # unpack if venv for minibatch sampling
                for k, v in batch.items():
                    if k not in ('advs', 'v_targets'):
                        batch[k] = math_util.venv_unpack(v)
            total_loss = torch.tensor(0.0)
            for _ in range(self.training_epoch):
                minibatches = util.split_minibatch(batch, self.minibatch_size)

                # if not self.pretrain_finished or not self.policy_training_flag:
                #     break

                for minibatch in minibatches:
                    if self.body.env.is_venv:  # re-pack to restore proper shape
                        for k, v in minibatch.items():
                            if k not in ('advs', 'v_targets'):
                                minibatch[k] = math_util.venv_pack(
                                    v, self.body.env.num_envs)
                    advs, v_targets = minibatch['advs'], minibatch['v_targets']
                    pdparams, v_preds = self.calc_pdparam_v(minibatch)
                    policy_loss = self.calc_policy_loss(
                        minibatch, pdparams, advs)  # from actor
                    val_loss = self.calc_val_loss(v_preds,
                                                  v_targets)  # from critic
                    if self.shared:  # shared network
                        loss = policy_loss + val_loss
                        self.net.train_step(loss,
                                            self.optim,
                                            self.lr_scheduler,
                                            clock=clock,
                                            global_net=self.global_net)
                    else:
                        # pretrain_finished = false -> policy keep fixed, updating value net and disc
                        if not self.pretrain_finished:
                            self.critic_net.train_step(
                                val_loss,
                                self.critic_optim,
                                self.critic_lr_scheduler,
                                clock=clock,
                                global_net=self.global_critic_net)
                            loss = val_loss
                        if self.pretrain_finished and self.policy_training_flag:
                            self.net.train_step(policy_loss,
                                                self.optim,
                                                self.lr_scheduler,
                                                clock=clock,
                                                global_net=self.global_net)
                            self.critic_net.train_step(
                                val_loss,
                                self.critic_optim,
                                self.critic_lr_scheduler,
                                clock=clock,
                                global_net=self.global_critic_net)
                            loss = policy_loss + val_loss

                    total_loss += loss
            loss = total_loss / self.training_epoch / len(minibatches)
            if not self.pretrain_finished:
                logger.info(
                    "warmup Value net, epi: {}, frame: {}, loss: {}".format(
                        clock.epi, clock.frame, loss))
            # reset
            self.to_train = 0
            self.policy_training_flag = False
            logger.debug(
                f'Trained {self.name} at epi: {clock.epi}, frame: {clock.frame}, t: {clock.t}, total_reward so far: {self.body.total_reward}, loss: {loss:g}'
            )
            return loss.item()
        else:
            return np.nan