Exemple #1
0
def g_error(pic, w1, w2, ans, N):
    data = np.zeros((6, 36))
    a = np.zeros((6, 2))
    for i in range(0, 6):
        if random.randint(0, 1) == 1:
            p = p_gn(N)
            p1 = tf.reshape(p.astype('float64').reshape(1, 3000) / 255,
                            shape=[-1, 50, 60, 1])
            II = conv2d(p1, w1)
            II = maxpool2d(II, k=5)
            II1 = conv2d(II, w2)
            II1 = maxpool2d(II1, k=5)
            II1 = tf.reshape(II1, [-1, 36]).eval()
            data[i, :] = II1
            a[i, :] = [1, 0]
        if random.randint(0, 1) == 0:
            k = random.randint(0, 5)
            while k == ans:
                k = random.randint(0, 5)
            p = pic[:, :, k]
            p1 = tf.reshape(p.astype('float64').reshape(1, 3000) / 255,
                            shape=[-1, 50, 60, 1])
            II = conv2d(p1, w1)
            II = maxpool2d(II, k=5)
            II1 = conv2d(II, w2)
            II1 = maxpool2d(II1, k=5)
            II1 = tf.reshape(II1, [-1, 36]).eval()
            data[i, :] = II1
            a[i, :] = [0, 1]

    return data, a
def forward(p, pic, w1, w2, w, b):
    with tf.Session() as sess:
        p1 = tf.reshape(p.astype('float64').reshape(1, 3000) / 255,
                        shape=[-1, 50, 60, 1])
        I = conv2d(p1, w1)
        I = maxpool2d(I, k=5)
        I1 = conv2d(I, w2)
        I1 = maxpool2d(I1, k=5)
        I1 = tf.reshape(I1, [-1, 36]).eval()
    II2 = np.zeros((6, 36))
    with tf.Session() as sess:
        for i in range(0, 6):
            p1 = tf.reshape(pic[:, :, i].astype('float64').reshape(1, 3000) /
                            255,
                            shape=[-1, 50, 60, 1])
            II = conv2d(p1, w1)
            II = maxpool2d(II, k=5)
            II1 = conv2d(II, w2)
            II1 = maxpool2d(II1, k=5)
            II1 = tf.reshape(II1, [-1, 36]).eval()
            II2[i, :] = II1
    II3 = np.zeros((6, 1024))
    II1 = I1.dot(w) + b
    with tf.Session() as sess:
        for i in range(0, 6):
            II3[i, :] = II2[i, :].dot(w) + b

    return II1, II3
def forward(pic,w1,w2):
    II=np.zeros((16,6*7*7))
    with tf.Session() as sess:
        for i in range (0,16):
            p1=tf.reshape(pic[:,:,i].astype('float64').reshape(1,28*28)/255 , shape=[-1, 28,28 , 1])
            I=conv2d(p1, w1)
            I=maxpool2d(I,k=2)
            I1 = conv2d(I, w2)
            I1=maxpool2d(I1,k=2)
            I1=tf.reshape(I1,[-1,6*7*7]).eval()
            II[i,:]=I1
    return II
Exemple #4
0
def forward(pic, w1, w2):
    II = np.zeros((9, 180))
    with tf.Session() as sess:
        for i in range(0, 9):
            p1 = tf.reshape(
                pic[:, :, i].astype('float64').reshape(1, 40 * 50) / 255,
                shape=[-1, 40, 50, 1])
            I = conv2d(p1, w1)
            I = maxpool2d(I, k=3)
            I1 = conv2d(I, w2)
            I1 = maxpool2d(I1, k=3)
            I1 = tf.reshape(I1, [-1, 180]).eval()
            II[i, :] = I1
    return II
def prep(pic, weight1, weight2):
    n = weight1.shape[4]
    M = np.zeros((n, pic.shape[2], 7020))
    with tf.Session() as sess:
        p = np.zeros((pic.shape[2], 3000))
        for i in range(0, pic.shape[2]):
            p[i, :] = pic[:, :, i].reshape(3000, )
        p = tf.reshape(p, shape=[-1, 50, 60, 1])
        for k in range(0, n):
            I = conv2d(p, weight1[:, :, :, :, k].reshape(25, 25, 1, 3))
            I = maxpool2d(I, k=2)
            I1 = conv2d(I, weight2[:, :, :, :, k].reshape(50, 50, 3, 6))
            # Max Pooling (down-sampling)
            I1 = maxpool2d(I1, k=2)
            I1 = tf.reshape(I1, [-1, 7020]).eval()
            M[k, :, :] = I1
    return M
def prep(pic, weight1, weight2, a):
    n = weight1.shape[4]
    M = np.zeros((n, pic.shape[2], 49 * 2 * a))
    with tf.Session() as sess:
        p = np.zeros((pic.shape[2], 784))
        for i in range(0, pic.shape[2]):
            p[i, :] = pic[:, :, i].reshape(784, )
        p = tf.reshape(p, shape=[-1, 28, 28, 1])
        for k in range(0, n):
            I = conv2d(p, weight1[:, :, :, :, k].reshape(5, 5, 1, a))
            I = maxpool2d(I, 2)
            I1 = conv2d(I, weight2[:, :, :, :, k].reshape(5, 5, a, 2 * a))
            # Max Pooling (down-sampling)
            I1 = maxpool2d(I1, 2)
            I1 = tf.reshape(I1, [-1, 49 * 2 * a]).eval()
            M[k, :, :] = I1
    return M
Exemple #7
0
def forward(p, pic, w1, w2):
    with tf.Session() as sess:
        p1 = tf.reshape(p.astype('float64').reshape(1, 3000) / 255,
                        shape=[-1, 50, 60, 1])
        I = conv2d(p1, w1)
        I = maxpool2d(I, k=5)
        #I1 = conv2d(I, w2)
        #I1=maxpool2d(I1,k=5)
        I1 = tf.reshape(I, [-1, 360]).eval()
    II2 = np.zeros((6, 360))
    with tf.Session() as sess:
        for i in range(0, 6):
            p1 = tf.reshape(pic[:, :, i].astype('float64').reshape(1, 3000) /
                            255,
                            shape=[-1, 50, 60, 1])
            II = conv2d(p1, w1)
            II = maxpool2d(II, k=5)
            #II1 = conv2d(II, w2)
            #II1=maxpool2d(II1,k=5)
            II1 = tf.reshape(II, [-1, 360]).eval()
            II2[i, :] = II1
    return I1, II2