def _find_regions(self, node):

    if node.width == 1:
      return 0., 0.

    # resigned to split into 2
    if node.width == 2:
      is_homogeneous = np.allclose(node.pixels[0], node.pixels[1], rtol=5e-2, atol=0)
      if is_homogeneous:
        idx = int(node.seq, 2)
        base = 2 ** len(node.seq)
        start = idx * node.width // base
        end = start + node.width


    else:
      stat, isSimilar = normal_test(node.pixels)
      if isSimilar:
        start = 
        end = start + node.width

        return stat

    stat = 0.
    node.split()
    stat += self._find_regions(node.left_child)
    stat += self._find_regions(node.right_child)
    return stat
  def homogeneity(self, node):
    # constant intensity
    if (node.pixels == node.pixels[:, 0]).all():
      return 0., True
    if node.width == 2:
      sse = math.sqrt((node.pixels[:, 0] - node.pixels[:, 1]) ** 2)
      is_homogeneous = np.allclose(left, right, rtol=5e-2, atol=0)
      return sse.sum(), is_homogeneous

    # fit a low-order polynomial
    x = [i for i in range(node.width)]
    degree = 1
    p, residuals, rank, _, _ = np.polyfit(x, node.pixels, degree, full=True)
    return residuals.sum(), normal_test(residuals)
def homogenity_test(root):
  # constant intensity
  if (root.pixels == root.pixels[0]).all():
    return True
  if root.width == 2:
    return closeness_test(root.pixels[0], root.pixels[1])

  # fit a low-order polynomial
  x = [i for i in range(root.width)]
  degree = 1
  p, residuals, rank, _, _ = np.polyfit(x, root.pixels, degree, full=True)
  
  # the residuals are only some noise
  stat, hypothesis = normal_test(residuals)
  return hypothesis
  def _grow_column_tree(self, node):
    if node.width == 1:
      return 0.

    if node.width == 2:
      is_homogeneous = np.allclose(node.pixels[0], node.pixels[1], rtol=5e-2, atol=0)
      if is_homogeneous:
        return 

    elif normal_test(root):
      return

    root.split()
    self._grow_column_tree(self, root.left_child)
    self._grow_column_tree(self, root.right_child)
    return
Exemple #5
0
 def similarity_test(self, left_tree, right_tree):
   diff = left_tree.pixels - right_tree.pixels
   quality = np.linalg.norm(left_tree.pixels - right_tree.pixels)
   stat, similar = normal_test(left_tree.pixels - right_tree.pixels)
   return quality, stat, similar